×

Analysis of a malaria epidemic model with age structure and spatial diffusion. (English) Zbl 1464.35383

Summary: This paper aims to provide the complete analysis on the threshold dynamics of an age-space structured malaria epidemic model. We formulate the model in a spatially bounded domain by assuming that: (i) the density of susceptible humans at space \(x\) stabilizes at \(H(x)\); (ii) the force of infection between human population and mosquitoes is given by the mass action incidence. By appealing to the theory of fixed point problem and Picard sequences and iteration, the well-posedness of the model is shown by verifying that the solution exists globally and the model admits a global attractor. In the spatially homogeneous case, we establish the explicit formula for the basic reproduction number, which governs the malaria extinction and persistence. The local and global stability of equilibria is achieved by studying the distribution of characteristic roots of characteristic equation and constructing the suitable Lyapunov functions, respectively.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
92D30 Epidemiology
92D25 Population dynamics (general)
35B35 Stability in context of PDEs
35B41 Attractors
35P25 Scattering theory for PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Aron, JL; May, RM; Anderson, RM, The Population Dynamics of Malaria, The Population Dynamics of Infectious Diseases: Theory and Applications, 139-179 (1982), London: Chapman and Hall, London · doi:10.1007/978-1-4899-2901-3_5
[2] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044 · doi:10.1137/1018114
[3] Britton, NF, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50, 1663-1688 (1990) · Zbl 0723.92019 · doi:10.1137/0150099
[4] Bai, Z.; Peng, R.; Zhao, X-Q, A reaction-diffusion malaria model with seasonality and incubation period, J. Math. Biol., 77, 201-228 (2018) · Zbl 1390.35145 · doi:10.1007/s00285-017-1193-7
[5] Chekroun, A.; Kuniya, T., An infection age-space structured SIR epidemic model with neumann boundary condition, Appl. Anal., 99, 11, 1972-1985 (2020) · Zbl 1456.35201 · doi:10.1080/00036811.2018.1551997
[6] Cantrell, RS; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations (2003), West Sussex: Wiley, West Sussex · Zbl 1059.92051
[7] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[8] Chamchod, F.; Britton, NF, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73, 639-657 (2011) · Zbl 1225.92030 · doi:10.1007/s11538-010-9545-0
[9] Ducrot, A.; Magal, P., Travelling wave solutions for an infection-age structured model with diffusion, Proc. R. Soc. Edinb., 139, 459-482 (2009) · Zbl 1178.35117 · doi:10.1017/S0308210507000455
[10] Ducrot, A.; Magal, P., Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24, 2891-2911 (2011) · Zbl 1227.92044 · doi:10.1088/0951-7715/24/10/012
[11] Fitzgibbon, WE; Morgan, JJ; Webb, G., An outbreak vector-host epidemic model with spatial structure: the 2015-2016 Zika outbreak in Rio De Janeiro Theor, Biol. Med. Modell., 14, 7 (2017) · doi:10.1186/s12976-017-0051-z
[12] Grassly, NC; Fraser, C., Seasonal infectious disease epidemiology, Proc. R. Soc. B, 273, 2541-2550 (2006) · doi:10.1098/rspb.2006.3604
[13] Guo, Z.; Wang, F-B; Zou, X., Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65, 1387-1410 (2012) · Zbl 1257.35105 · doi:10.1007/s00285-011-0500-y
[14] Gourley, S.A., Wu, J.: Delayed non-local diffusive systems in biological invasion and disease spread. In: Nonlinear Dynamics and Evolution Equations, AMS, Providence, RI (2006) · Zbl 1130.35127
[15] Gutierrez, JB; Galinski, MR; Cantrell, S.; Voit, EO, From within host dynamics to the epidemiology of infectious disease scientific overview and challenges, Math. Biosci., 270, 143-155 (2015) · Zbl 1364.92044 · doi:10.1016/j.mbs.2015.10.002
[16] Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Math. Survey Monogr, vol. 25. AMS, Providence (1988) · Zbl 0642.58013
[17] Hsu, SB; Wang, F-B; Zhao, X-Q, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dynam. Differ. Equ., 23, 817-842 (2011) · Zbl 1242.35208 · doi:10.1007/s10884-011-9224-3
[18] Killeen, GF; McKenzie, FE; Foy, BD, A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control, Am. J. Trop. Med. Hyg., 62, 535-544 (2000) · doi:10.4269/ajtmh.2000.62.535
[19] Koella, JC, On the use of mathematical models of malaria transmission, Acta Trop., 49, 1-25 (1991) · doi:10.1016/0001-706X(91)90026-G
[20] Li, J.; Zou, X., Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71, 2048-2079 (2009) · Zbl 1180.92080 · doi:10.1007/s11538-009-9457-z
[21] Lou, Y.; Zhao, X-Q, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62, 543-568 (2011) · Zbl 1232.92057 · doi:10.1007/s00285-010-0346-8
[22] Magal, P.; Webb, G.; Wu, Y., On a vector-host epidemic model with spatial structure, Nonlinearity, 31, 5589-5614 (2018) · Zbl 1408.35199 · doi:10.1088/1361-6544/aae1e0
[23] Macdonald, G., The Epidemiology and Control of Malaria (1957), London: Oxford University Press, London
[24] Pazy, A., Semigroups of Linear Operators and Application to Partial Differential Equations (1983), New York: Springer, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[25] Ross, R., The Prevention of Malaria (1911), London: Murray, London
[26] Smith, DL; Dushoff, J.; McKenzie, FE, The risk of a mosquito-borne infection in a heterogeneous environment, PLoS Biol., 2, 1957-1964 (2004) · doi:10.1371/journal.pbio.0020368
[27] Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Survey Monogr, vol. 41. AMS, Providence, RI (1988)
[28] Villela, DAM; Bastos, L.; Carvalho, LM, Zika in Rio de Janeiro: assessment of basic reproduction number and comparison with dengue outbreaks, Epidemiol. Infect., 145, 1649-1657 (2016) · doi:10.1017/S0950268817000358
[29] Vargas-De-León, C., Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9, 165-174 (2012) · Zbl 1259.34071 · doi:10.3934/mbe.2012.9.165
[30] Wang, W.; Zhao, X-Q, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11, 1652-1673 (2012) · Zbl 1259.35120 · doi:10.1137/120872942
[31] Walker, JA, Dynamical Systems and Evolution Equations: Theory and Applications (1980), New York: Plenum Press, New York · Zbl 0421.34050 · doi:10.1007/978-1-4684-1036-5
[32] Wang, J.; Chen, Y., Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias, Appl. Math. Lett., 100, 106052 (2020) · Zbl 1431.35214 · doi:10.1016/j.aml.2019.106052
[33] Wang, X.; Zhao, X-Q, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77, 181-201 (2017) · Zbl 1401.35188 · doi:10.1137/15M1046277
[34] Xu, Z.; Zhao, X-Q, A vector-bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst. Ser. B, 17, 2615-2634 (2012) · Zbl 1254.35225
[35] Yang, J.; Xu, R.; Li, J., Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition, Nonlinear Anal. RWA., 50, 192-217 (2019) · Zbl 1430.92117 · doi:10.1016/j.nonrwa.2019.04.013
[36] Zhang, L.; Wang, Z., A time-periodic reaction-diffusion epidemic model with infection period, Z. Angew. Math. Phys., 67, 117 (2016) · Zbl 1358.35215 · doi:10.1007/s00033-016-0711-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.