Skip to main content

Advertisement

Log in

Analysis of a Reaction–Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate the long term behaviors of a reaction-diffusion cholera model in bounded spatial domain with zero-flux boundary condition. The parameters in the model involving space are typical space-dependent due to spatial heterogeneity. We consider the case that the dispersal rates of the susceptible and infected hosts are different, no diffusion term in the cholera equation and bilinear incidence infection mechanism. The existence of global solution, uniform boundedness of solution, asymptotic smoothness of semiflows and existence of global attractor are also addressed. We define the basic reproduction number \(\mathfrak {R}_0\) for the model for the disease transmission in spatially homogeneous environment and establish a threshold type result for the disease eradication or uniform persistence. Considering the cases that either the dispersal rate of the susceptible individuals or the dispersal rate of the infected individuals approaches zero, we investigate the asymptotical profiles of the endemic steady state. Our results suggest that: cholera can be eliminated by limiting the movement of the susceptible individuals, while limiting the mobility of the infected hosts, the infected individuals concentrate on certain points in some circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Disc. Cont. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  2. Andrews, J.R., Basu, S.: Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377, 1248–1255 (2011)

    Article  Google Scholar 

  3. Brauer, F., Shuai, Z., van den Driessche, P.: Dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 10, 1335–1349 (2013)

    Article  MathSciNet  Google Scholar 

  4. Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)

    Article  Google Scholar 

  5. Dwyer, G.: Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 97, 533–562 (2014)

    Google Scholar 

  6. Guo, Z., Wang, F.-B., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)

    Article  MathSciNet  Google Scholar 

  7. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1989)

    Google Scholar 

  8. Hartley, D.M., Morris, J.G., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLOS Med. 3, 63–69 (2006)

    Article  Google Scholar 

  9. Li, H., Peng, R., Wang, F.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2009)

    Article  MathSciNet  Google Scholar 

  10. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Bio. 62, 543–568 (2011)

    Article  MathSciNet  Google Scholar 

  11. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  12. Martin, R.H., Smith, H.L.: Abstract functional differential equtions and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    Google Scholar 

  13. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Nat. Acad. Sci. U.S.A. 108, 8767–8772 (2011)

    Article  Google Scholar 

  14. Neilan, R.L.M., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72, 2004–2018 (2010)

    Article  MathSciNet  Google Scholar 

  15. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  Google Scholar 

  16. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25 (2013)

    Article  MathSciNet  Google Scholar 

  17. Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  Google Scholar 

  18. Posny, D., Wang, J., Mukandavire, Z., Modnak, C.: Analyzing transmission dynamics of cholera with public health interventions. Math. Biosci. 264, 38–53 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shuai, Z., van den Driessche, P.: Global dynamics of cholera models with differential infectivity. Math. Biosci. 234, 118–126 (2013)

    Article  MathSciNet  Google Scholar 

  20. Smith, H.L., Zhao, X.-Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47, 6169–6179 (2001)

    Article  MathSciNet  Google Scholar 

  21. Thieme, H.R.: Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30(7), 755–763 (1992)

    Article  MathSciNet  Google Scholar 

  22. Thieme, H.R.: Spectral bound and reproduction number for intinite-dimensional population structure and time heterogeneity. SIAMJ. Appl. Math. 70, 188–211 (2009)

    Article  Google Scholar 

  23. Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)

    Article  MathSciNet  Google Scholar 

  24. Tuite, A.R., Tien, J.H., Eisenberg, M., Earn, D.J.D., Ma, J., Fisman, D.N.: Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann. Intern. Med. 154, 593–601 (2011)

    Article  Google Scholar 

  25. Vaidya, N.K., Wang, F.-B., Zou, X.: Avian influenza dynamics in mild birds with bird mobility and spatial heterogeneous environment. Discret. Contin. Dyn. Syst. Ser B 17, 2829–2848 (2012)

    Article  Google Scholar 

  26. Wang, X., Wang, J.: Disease dynamics in a coupled cholera model linking within-host and between-host interactions. J. Biol. Dyn. 11(S1), 238–262 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Wang, W., Zhao, X.-Q.: Basic reproduction number for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

  28. Wang, F.-B., Shi, J., Zou, X.: Dynamics of a host-pathogen system on a bounded spatial domain. Commun. Pure Appl. Anal. 14(6), 2535–2560 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Zhang, R., Kuniya, T.: A note on dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 13(1), 227–247 (2016)

    Article  MathSciNet  Google Scholar 

  30. Webb, G.F.: A reaction–diffusion model for a deterministic diffusive models. J. Math. Anal. Appl. 84, 150–161 (1981)

    Article  MathSciNet  Google Scholar 

  31. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press, Boca Raton (1985)

    MATH  Google Scholar 

  32. Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewer for his/her suggestions that have improved this paper. J.L. Wang was supported by National Natural Science Foundation of China (No. 11871179), Natural Science Foundation of Heilongjiang Province (No. LC2018002) and Heilongjiang Privincial Key Laboratory of the Theory and Computation of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J. Analysis of a Reaction–Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population. J Dyn Diff Equat 33, 549–575 (2021). https://doi.org/10.1007/s10884-019-09820-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09820-8

Keywords

Navigation