×

A Kronecker-type identity and the representations of a number as a sum of three squares. (English) Zbl 1428.11073

Summary: By considering a limiting case of a Kronecker-type identity, we obtain an identity found by both G. E. Andrews [Trans. Am. Math. Soc. 293, 113–134 (1986; Zbl 0593.10018)] and R. E. Crandall [Exp. Math. 8, No. 4, 367–379 (1999; Zbl 0949.11062)]. We then use the Andrews-Crandall identity to give a new proof of a formula of Gauss for the representations of a number as a sum of three squares. From the Kronecker-type identity, we also deduce Gauss’ theorem that every positive integer is representable as a sum of three triangular numbers.

MSC:

11E25 Sums of squares and representations by other particular quadratic forms
11B65 Binomial coefficients; factorials; \(q\)-identities
05A15 Exact enumeration problems, generating functions

References:

[1] G. E.Andrews, ‘Ramanujan’s fifth and seventh order mock theta functions’, Trans. Amer. Math. Soc.293 (1986) 113-134. · Zbl 0593.10018
[2] E. T.Bell, ‘Class numbers and the form \(y z + z x + x y\)’, Tohoku Math J.19 (1921) 105-116. · JFM 48.1167.03
[3] Z. I.Borevich and I. R.Shafarevich, Number theory, pure and applied mathematics, vol. 20 (Academic Press, New York-London, 1966). · Zbl 0145.04902
[4] J.Borwein and K.Choi, ‘On the representations of \(x y + y z + z x\)’, Exp. Math.9 (2000) 153-158. · Zbl 0970.11011
[5] H.Cohen, A course in computational algebraic number theory (Springer, Berlin-Heidelberg, 1993). · Zbl 0786.11071
[6] S.Cooper and H. Y.Lam, ‘Sums of two, four, six and eight squares and triangular numbers: an elementary approach’, Indian J. Math.44 (2002) 21-40. · Zbl 1041.11021
[7] R. E.Crandall, ‘New representations for the Madelung constant’, Exp. Math.8 (1999) 367-379. · Zbl 0949.11062
[8] F.Diamond and J.Shurman, A first course in modular forms, Graduate Texts in Mathematics 228 (Springer, New York, 2005). · Zbl 1062.11022
[9] L. E.Dickson, History of the theory of numbers, vol. III, Quadratic and Higher Forms, with a Chapter on the Class Number by G. H. Cresse (Chelsea, New York, 1966).
[10] W. H.Gage, ‘Representations in the form \(x y + y z + z x\)’, Amer. J. Math.51 (1929) 345-348. · JFM 55.0109.01
[11] C. F.Gauss, Disquisitiones Arithmeticae (Leipzig, 1801).
[12] E.Hecke, Neue Herleitung der Klassenzahlrelationen von Hurwitz und Kronecker, Nach. D. Königl. Ges. d. Wiss. zu Göttingen, Math.‐phys. Kl. (1926) Mathematische Werke (Vandenhoeck & Ruprecht, Göttingen, 1970) 499-504. · Zbl 0205.28902
[13] F.Hirzebruch and D.Zagier, ‘Intersection numbers of curves on Hilbert modular surfaces and modular forms of nebentypus’, Invent. Math.36 (1976) 57-113. · Zbl 0332.14009
[14] L.Kronecker, ‘Über die Anzahl der verschiedenen Klassen quadratischer Formen von negativer Diskriminante’, J. reine angew. Math.57 (1860) 248-255. · ERAM 057.1518cj
[15] L.Kronecker, ‘Zur Theorie der elliptischen Functionen’, Monatsber. K. Akad. Wiss. zu Berlin (1881) 1165-1172. · JFM 13.0363.01
[16] L.Kronecker, Leopold Kronecker’s Werke, Bd. IV (B.G. Teubner, Leipzig, 1929; reprinted by Chelsea, New York, 1968). · JFM 55.0015.03
[17] B.Lass, ‘Démonstration de la conjecture de Dumont’, C. R. Math. Acad. Sci. Paris341 (2005) 713-718. · Zbl 1103.11027
[18] L. J.Mordell, ‘On class relation formulae’, Messenger Math.46 (1916) 113-135.
[19] L. J.Mordell, ‘On the number of solutions in positive integers of the equation \(y z + z x + x y = n\)’, Amer. J. Math.45 (1923) 1-4. · JFM 49.0695.04
[20] E. T.Mortenson, ‘A double‐sum Kronecker‐type identity’, Adv. Appl. Math.82 (2017) 155-177. · Zbl 1414.11027
[21] M.Peters, ‘The diophantine equation \(x y + y z + z x = n\) and indecomposable binary quadratic forms’, Exp. Math.13 (2004) 273-274. · Zbl 1147.11314
[22] H. J. S.Smith, Collected mathematical papers (Clarendon Press, Oxford, 1894). · JFM 25.0029.02
[23] J.Tannery and J.Molk, Éléments de la Théorie des fonctions Elliptiques, vol. III (Gauthier‐Villars, Paris, 1896; reprinted by Chelsea, New York, 1972). · JFM 27.0335.01
[24] J. V.Uspensky and M. A.Heaslet, Elementary number theory (McGraw‐Hill Book, New York, 1939). · Zbl 0024.24702
[25] S. O.Warnaar, ‘Ramanujan’s \({}_1 \psi_1\) summation’, Srinivisa Ramanujan: going strong at 125, Part II (ed K. Alladi) Notices Amer. Math. Soc.60 (2013) 10-23. · Zbl 1292.33002
[26] A.Weil, ‘Sur les sommes de trois et quatre carrés’, Enseign. Math. II. Sér.20 (1974) 215-222. · Zbl 0298.10027
[27] A.Weil, Elliptic functions according to Eisenstein and Kronecker (Springer, Berlin, 1976). · Zbl 0318.33004
[28] P. J.Weinberger, ‘Exponents of the class groups of complex quadratic fields’, Acta Arith.22 (1973) 117-124. · Zbl 0217.04202
[29] D. B.Zagier, Zetafunktionen und quadratische Körper: eine Einführung in die höhere Zahlentheorie (Springer, Berlin-Heidelberg, New York, 1981). · Zbl 0459.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.