×

Mathematical models: perspectives of mathematical modelers and public health professionals. (English) Zbl 1533.92121

David, Jummy (ed.) et al., Mathematics of public health. Mathematical modelling from the next generation. Cham: Springer. Fields Inst. Commun. 88, 1-35 (2024).
Summary: This chapter describes mathematical epidemiology from the perspectives of mathematical modelers and public health professionals. The mathematical approach in terms of model formulation, model algorithm, terminologies, quantitative and qualitative analysis, theoretical interpretation of human data, and parameter estimation, in the context of public health, is emphasized.
The chapter also addresses and gives examples of communicable disease models that have been used in the past for answering some public health questions. In addition, we summarize the implications of the results of these various models for endemic and epidemic scenarios on public policy over the years.
For the entire collection see [Zbl 1531.92005].

MSC:

92C60 Medical epidemiology
92-10 Mathematical modeling or simulation for problems pertaining to biology

Software:

NetLogo
Full Text: DOI

References:

[1] Anderson, RM, The role of mathematical models in the study of hiv transmission and the epidemiology of aids, J. Acquir. Immune Defic. Syndr., 1, 3, 241-256 (1988)
[2] Andrieu, C., Doucet, A., Holenstein, R.: Particle markov chain monte carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269-342 (2010) · Zbl 1411.65020
[3] Arino, J.; Bauch, C.; Brauer, F.; Driedger, SM; Greer, AL; Moghadas, SM; Pizzi, NJ; Sander, B.; Tuite, A.; Van Den Driessche, P., Pandemic influenza: modelling and public health perspectives, Math. Biosci. Eng., 8, 1, 1 (2011) · Zbl 1260.92046 · doi:10.3934/mbe.2011.8.1
[4] Arino, J., Driessche, P.v.d.: The basic reproduction number in a multi-city compartmental epidemic model. In: Positive Systems, pp. 135-142. Springer, New York (2003) · Zbl 1057.92045
[5] Ashish R. Hota Tanya Sneh, K.G.: Impacts of game-theoretic activation on epidemic spread over dynamical networks. SIAM J. Control Optim. 60(2), S92-S118 (2022) · Zbl 1480.92198
[6] Aya, A., Aldila, D., Handari, B.: SDE model of SARS disease in Hong Kong and Singapore with parameter stochasticity. In: T. Mart (ed.) Proceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences 2017 (ISCPMS 2017), p. 020218. AIP Conference Proceedings (2017)
[7] Bélanger, A.; Sabourin, P., Microsimulation and Population Dynamics: An Introduction to Modgen 12 (2017), Cham, Switzerland: Springer, Cham, Switzerland · doi:10.1007/978-3-319-44663-9
[8] Bichara, D.; Kang, Y.; Castillo-Chavez, C.; Horan, R.; Perrings, C., Sis and sir epidemic models under virtual dispersal, Bull. Math. Biol., 77, 11, 2004-2034 (2015) · Zbl 1339.92078 · doi:10.1007/s11538-015-0113-5
[9] Booth, TF; Kournikakis, B.; Bastien, N.; Ho, J.; Kobasa, D.; Stadnyk, L.; Li, Y.; Spence, M.; Paton, S.; Henry, B.; Mederski, B.; White, D.; Low, DE; McGeer, A.; Simor, A.; Vearncombe, M.; Downey, J.; Jamieson, FB; Tang, P.; Plummer, F., Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units, J. Infect. Dis., 191, 1472-1477 (2005) · doi:10.1086/429634
[10] Brauer, F., Age-of-infection and the final size relation, Math. Biosci. Eng., 5, 4, 681 (2008) · Zbl 1166.92321 · doi:10.3934/mbe.2008.5.681
[11] Brauer, F., Mathematical epidemiology: Past, present, and future, Infect. Dis. Modell., 2, 2, 113-127 (2017)
[12] Brauer, F.: A new epidemic model with indirect transmission. J. Biol. Dyn. 11(sup2), 285-293 (2017) · Zbl 1447.92400
[13] Brauer, F.; Castillo-Chavez, C.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2012), New York: Springer, New York · Zbl 1302.92001 · doi:10.1007/978-1-4614-1686-9
[14] Campbell, J.: SARS Commission Final Report: Spring of Fear. Commission to Investigate the Introduction and Spread of SARS in Ontario (2006). www.sarscommission.ca
[15] Casagrandi, R.; Bolzoni, L.; Levin, SA; Andreasen, V., The SIRC model and influenza a, Math. Biosci., 200, 2, 152-169 (2006) · Zbl 1089.92043 · doi:10.1016/j.mbs.2005.12.029
[16] Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., et al.: The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 368(6489), 395-400 (2020)
[17] Choi, B.; Pak, A., A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths, J. Epidemiol. Community Health, 57, 831-835 (2003) · doi:10.1136/jech.57.10.831
[18] Chowell, G., Brauer, F.: The basic reproduction number of infectious diseases: computation and estimation using compartmental epidemic models. In: Mathematical and statistical estimation approaches in epidemiology, pp. 1-30. Springer, New York (2009) · Zbl 1345.92136
[19] Chowell, G., Fenimore, P., Castillo-Garsow, M., C., C.C.: SARS outbreak in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J. Theor. Biol. 224, 1-8 (2003) · Zbl 1434.92028
[20] David, J.; Bragazzi, NL; Scarabel, F.; McCarthy, Z.; Wu, J., Non-pharmaceutical intervention levels to reduce the covid-19 attack ratio among children, R. Soc. Open Sci., 9, 3, 211863 (2022) · doi:10.1098/rsos.211863
[21] Eaton, JW; Bacaër, N.; Bershteyn, A.; Cambiano, V.; Cori, A.; Dorrington, RE; Fraser, C.; Gopalappa, C.; Hontelez, JAC; Johnson, LF; Klein, DJ; Phillips, AN; Pretorius, C.; Stover, J.; Rehle, TM; Hallet, TB, Assessment of epidemic projections using recent HIV survey data in South Africa: a validation analysis of ten mathematical models of HIV epidemiology in the antiretroviral therapy era, Lancet Glob. Health, 3, e598-608 (2015) · doi:10.1016/S2214-109X(15)00080-7
[22] Eaton, JW; Johnson, LF; Salomon, JA; Bärnighausen, T.; Bendavid, E.; Bershteyn, A.; Bloom, DE; Cambiano, V.; Fraser, C.; Hontelez, JA, Hiv treatment as prevention: systematic comparison of mathematical models of the potential impact of antiretroviral therapy on hiv incidence in South Africa, PLoS Med., 9, 7 (2012) · doi:10.1371/journal.pmed.1001245
[23] Endo, A.; Van Leeuwen, E.; Baguelin, M., Introduction to particle markov-chain monte carlo for disease dynamics modellers, Epidemics, 29, 100363 (2019) · doi:10.1016/j.epidem.2019.100363
[24] Frazier, PI; Cashore, JM; Duan, N.; Henderson, SG; Janmohamed, A.; Liu, B.; Shmoys, DB; Wan, J.; Zhang, Y., Modeling for covid-19 college reopening decisions: Cornell, a case study, Proc. Natl. Acad. Sci., 119, 2 (2022) · doi:10.1073/pnas.2112532119
[25] Gandon, S.; Lion, S., Targeted vaccination and the speed of sars-cov-2 adaptation, Proc. Natl. Acad. Sci., 119, 3 (2022) · doi:10.1073/pnas.2110666119
[26] Gordis, L.: Epidemiology: with student consult online access (2014)
[27] Granich, RM; Gilks, CF; Dye, C.; De Cock, KM; Williams, BG, Universal voluntary hiv testing with immediate antiretroviral therapy as a strategy for elimination of hiv transmission: a mathematical model, Lancet, 373, 9657, 48-57 (2009) · doi:10.1016/S0140-6736(08)61697-9
[28] Greenwood, P.E., Gordillo, L.F.: Stochastic epidemic modeling. In: Mathematical and statistical estimation approaches in epidemiology, pp. 31-52. Springer, New York (2009) · Zbl 1345.92144
[29] Hamer, WH, The Milroy Lectures on Epidemic Diseases in England: The Evidence of Variability and of Persistency of Type; Delivered Before the Royal College of Physicians of London, March 1st, 6th, and 8th, 1906 (1906), Lambertville: Bedford Press, Lambertville
[30] Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P., Ranking the effectiveness of worldwide covid-19 government interventions, Nat. Hum. Behav., 4, 12, 1303-1312 (2020) · doi:10.1038/s41562-020-01009-0
[31] Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, NI; Jarvis, CI; Russell, TW; Munday, JD; Kucharski, AJ; Edmunds, WJ; Sun, F., Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts, Lancet Glob. Health, 8, 4, e488-e496 (2020) · doi:10.1016/S2214-109X(20)30074-7
[32] Hunter, E., Kelleher, J.: Framework for validating and testing agent-based models: a case study from infectious disease modelling. In: 34th Annual European Simulation and Modelling Conference. Toulouse, France (2020). doi:10.21427/2xjb-cq79
[33] Hunter, E.; Mac Namee, B.; Kelleher, J., An open-data-driven agent-based model to simulate infectious disease outbreaks, PloS One, 13, 12, 1-35 (2018) · doi:10.1371/journal.pone.0208775
[34] Hunter, E.; MacNamee, B.; Kelleher, J., A taxonomy for agent-based models in human infectious disease epidemiology, J. Artif. Soc. Soc. Simul., 20, 3, 2 (2017) · doi:10.18564/jasss.3414
[35] Hunter, E.; MacNamee, B.; Kelleher, J., Using a socioeconomic segregation burn-in model to initialise an agent-based model for infectious diseases, J. Artif. Soc. Soc. Simul., 21, 4, 9 (2018) · doi:10.18564/jasss.3870
[36] Jaberi-Douraki, M.; Moghadas, SM, Optimal control of vaccination dynamics during an influenza epidemic, Math. Biosci. Eng., 11, 5, 1045 (2014) · Zbl 1327.92060 · doi:10.3934/mbe.2014.11.1045
[37] Jiang, H.; Song, P.; Wang, S.; Yin, S.; Yin, J.; Zhu, C.; Cai, C.; Xu, W.; Li, W., Quantitative assessment of the effectiveness of joint measures led by fangcang shelter hospitals in response to covid-19 epidemic in Wuhan, China. BMC Infect. Dis., 21, 1, 1-11 (2021)
[38] JUNPo, H.I.V., AIDS HIV.: Aids JUNPo: 90-90-90: an ambitious treatment target to help end the AIDS epidemic. Geneva: UNAIDS (2014)
[39] Karatayev, VA; Anand, M.; Bauch, CT, Local lockdowns outperform global lockdown on the far side of the covid-19 epidemic curve, Proc. Natl. Acad. Sci., 117, 39, 24575-24580 (2020) · Zbl 1485.92005 · doi:10.1073/pnas.2014385117
[40] Keeling, M.; Danon, L., Mathematical modelling of infectious diseases, Br. Med. Bull., 92, 1, 33-42 (2009) · doi:10.1093/bmb/ldp038
[41] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char., 115, 772, 700-721 (1927) · JFM 53.0517.01
[42] Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. ii.-the problem of endemicity. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 138(834), 55-83 (1932) · Zbl 0005.30501
[43] Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. ii.-the problem of endemicity. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Char. 141(834), 94-112 (1932)
[44] Kim, Y.; Ryu, H.; Lee, S., Agent-based modeling for super-spreading events: A case study of MERS-CoV transmission dynamics in the Republic of Korea, Int. J. Environ. Res. Public Health, 15, 11, 2369 (2018) · doi:10.3390/ijerph15112369
[45] Kucharski, AJ; Klepac, P.; Conlan, AJ; Kissler, SM; Tang, ML; Fry, H.; Gog, JR; Edmunds, WJ; Emery, JC; Medley, G., Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of sars-cov-2 in different settings: a mathematical modelling study, Lancet Infect. Dis., 20, 10, 1151-1160 (2020) · doi:10.1016/S1473-3099(20)30457-6
[46] Lei, H.; Li, Y.; Xiao, S.; Lin, C.; Norris, SL; Wei, D.; Hu, Z.; Ji, S., Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses, Indoor Air, 28, 394-403 (2018) · doi:10.1111/ina.12445
[47] Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, KS; Lau, EH; Wong, JY, Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 382, 1199-1207 (2020) · doi:10.1056/NEJMoa2001316
[48] Li, u., Yu, I.T.S., Xu, P., Lee, J.H.W., Wong, T.W., Ooi, P.L., Sleigh, A.C.: Predicting super spreading events during the 2003 severe acute respiratory syndrome epidemics in Hong Kong and Singapore. Am. J. Epidemiol. 160, 719-728 (2004)
[49] Li, Y.; Huang, X.; Yu, I.; Wong, T.; Qian, H., Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong, Indoor Air, 15, 83-95 (2004) · doi:10.1111/j.1600-0668.2004.00317.x
[50] Lima, VD; Johnston, K.; Hogg, RS; Levy, AR; Harrigan, PR; Anema, A.; Montaner, JS, Expanded access to highly active antiretroviral therapy: a potentially powerful strategy to curb the growth of the hiv epidemic, J. Infect. Dis., 198, 1, 59-67 (2008) · doi:10.1086/588673
[51] Lima, VD; Rozada, I.; Grebely, J.; Hull, M.; Lourenco, L.; Nosyk, B.; Krajden, M.; Yoshida, E.; Wood, E.; Montaner, JS, Are interferon-free direct-acting antivirals for the treatment of hcv enough to control the epidemic among people who inject drugs?, PloS One, 10, 12 (2015) · doi:10.1371/journal.pone.0143836
[52] Lin Wang, GZD, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68, 5, 1495-1502 (2008) · Zbl 1146.92031 · doi:10.1137/070694582
[53] Lucas M. Stolerman Daniel Coombs, S.B.: Sir-network model and its application to dengue fever. SIAM J. Appl. Math. 75(6), 2581-2609 (2015) · Zbl 1357.92075
[54] Martin, NK; Vickerman, P.; Grebely, J.; Hellard, M.; Hutchinson, SJ; Lima, VD; Foster, GR; Dillon, JF; Goldberg, DJ; Dore, GJ, Hepatitis c virus treatment for prevention among people who inject drugs: modeling treatment scale-up in the age of direct-acting antivirals, Hepatology, 58, 5, 1598-1609 (2013) · doi:10.1002/hep.26431
[55] Meyers, LA; Pourbohloul, B.; Newman, ME; Skowronski, DM; Brunham, RC, Network theory and sars: predicting outbreak diversity, J. Theor. Biol., 232, 1, 71-81 (2005) · Zbl 1442.92174 · doi:10.1016/j.jtbi.2004.07.026
[56] Mills, CE; Robins, JM; Lipsitch, M., Transmissibility of 1918 pandemic influenza, Nature, 432, 7019, 904-906 (2004) · doi:10.1038/nature03063
[57] Montaner, JS; Hogg, R.; Wood, E.; Kerr, T.; Tyndall, M.; Levy, AR; Harrigan, PR, The case for expanding access to highly active antiretroviral therapy to curb the growth of the hiv epidemic, Lancet, 368, 9534, 531-536 (2006) · doi:10.1016/S0140-6736(06)69162-9
[58] Montaner, JS; Lima, VD; Harrigan, PR; Lourenço, L.; Yip, B.; Nosyk, B.; Wood, E.; Kerr, T.; Shannon, K.; Moore, D., Expansion of haart coverage is associated with sustained decreases in hiv/aids morbidity, mortality and hiv transmission: the “hiv treatment as prevention” experience in a canadian setting, PloS One, 9, 2 (2014) · doi:10.1371/journal.pone.0087872
[59] Nah, K.; Nishiura, H.; Tsuchiya, N.; Sun, X.; Asai, Y.; Imamura, A., Test-and-treat approach to hiv/aids: a primer for mathematical modeling, Theor. Biol. Med. Modell., 14, 1, 1-11 (2017) · doi:10.1186/s12976-017-0062-9
[60] Naheed, A.; Singh, M.; Lucy, D., Numerical study of SARS epidemic model with the inclusion of diffusion in the system, Appl. Math. Comput., 229, 480-498 (2014) · Zbl 1365.92128
[61] Ojo, MM; Benson, TO; Peter, OJ; Goufo, EFD, Nonlinear optimal control strategies for a mathematical model of covid-19 and influenza co-infection, Physica A Stat. Mech. Appl., 607, 128173 (2022) · Zbl 07614922 · doi:10.1016/j.physa.2022.128173
[62] Potter, CW, A history of influenza, J. Appl. Microbiol., 91, 4, 572-579 (2001) · doi:10.1046/j.1365-2672.2001.01492.x
[63] Pourbohloul, B.; Miller, J., Network theory and the spread of communicable diseases, Center Dis. Model. Preprint, 3, 4-16 (2008)
[64] Rafferty, E.; McDonald, W.; Qian, W.; Osgood, N.; Doroshenko, A., Evaluation of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling, PeerJ, 6 (2018) · doi:10.7717/peerj.5012
[65] Romualdo Pastor-Satorras, AV, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200-3203 (2001) · doi:10.1103/PhysRevLett.86.3200
[66] Ross, R., The Prevention of Malaria (1911), London: John Murray, London
[67] Roy, CJ; Milton, DK, Airborne transmission of communicable infection—the elusive pathway, N. Engl. J. Med., 350, 3, 1710-1712 (2004) · doi:10.1056/NEJMp048051
[68] Rozada, I.; Coombs, D.; Lima, VD, Conditions for eradicating hepatitis c in people who inject drugs: A fibrosis aware model of hepatitis c virus transmission, J. Theor. Biol., 395, 31-39 (2016) · Zbl 1343.92518 · doi:10.1016/j.jtbi.2016.01.030
[69] Rvachev, LA; Longini, IM Jr, A mathematical model for the global spread of influenza, Math. Biosci., 75, 1, 3-22 (1985) · Zbl 0567.92017 · doi:10.1016/0025-5564(85)90064-1
[70] Star, L., Moghadas, S.: The role of mathematical modelling in public health planning and decision making. Purple Paper, National Collaborative Center for Infectious Diseases (2010)
[71] Tang, B.; Wang, X.; Li, Q.; Bragazzi, NL; Tang, S.; Xiao, Y.; Wu, J., Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions, J. Clin. Med., 9, 2, 462 (2020) · doi:10.3390/jcm9020462
[72] Taubenberger, JK; Morens, DM, 1918 influenza: the mother of all pandemics, Revista Biomedica, 17, 1, 69-79 (2006)
[73] Valleron, AJ; Cori, A.; Valtat, S.; Meurisse, S.; Carrat, F.; Boëlle, PY, Transmissibility and geographic spread of the 1889 influenza pandemic, Proc. Natl. Acad. Sci., 107, 19, 8778-8781 (2010) · doi:10.1073/pnas.1000886107
[74] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1-2, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[75] Wang, L.; Liu, Z.; Xu, D.; Zhang, X., Global dynamics and optimal control of an influenza model with vaccination, media coverage and treatment, Int. J. Biomath., 10, 5, 1750068 (2017) · Zbl 1367.34068 · doi:10.1142/S1793524517500681
[76] Wang, W.; Ruan, S., Simulating the sars outbreak in beijing with limited data, J. Theor. Biol., 227, 3, 369-379 (2004) · Zbl 1439.92185 · doi:10.1016/j.jtbi.2003.11.014
[77] Webb, G.; Blaser, MJ; Zhu, H.; Ardal, S.; Wu, J., Critical role of nosocomial transmission in the toronto sars outbreak, Math. Biosci. Eng., 1, 1, 1 (2004) · Zbl 1060.92054 · doi:10.3934/mbe.2004.1.1
[78] Weitz, JS; Park, SW; Eksin, C.; Dushoff, J., Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations, Proc. Natl. Acad. Sci., 117, 51, 32764-32771 (2020) · doi:10.1073/pnas.2009911117
[79] Wilasang, C., Suttirat, P., Chadsuthi, S., Wiratsudakul, A., Modchang, C.: Competitive evolution of h1n1 and h3n2 influenza viruses in the united states: A mathematical modeling study. J. Theor. Biol., 111292 (2022) · Zbl 07614396
[80] Wilensky, U., NetLogo (and NetLogo User Manual) (1999), Center for Connected Learning and Computer-Based Modeling: Northwestern University, Center for Connected Learning and Computer-Based Modeling
[81] Wolfson, M., POHEM: a framework for understanding and modelling the health of human populations, World Health Stat. Q., 47, 157-176 (1994)
[82] World Health Organization, et al.: Pandemic Influenza Preparedness and Response: A WHO Guidance Document. World Health Organization (2009)
[83] Yip, C.; Chang Wen, L.; Yeung, KH; Yu, ITS, Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong. J. Environ. Health, 70, 3, 39-47 (2007)
[84] Yu, I.; Li, Y.; Wong, T.; Tam, W.; Chan, AT; Lee, J.; Leung, D.; Ho, T., Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 350, 1731-1739 (2004) · doi:10.1056/NEJMoa032867
[85] Zhou, Y.; Ma, Z.; Brauer, F., A discrete epidemic model for SARS transmission and control in China, Math. Comput. Modell., 40, 1491-1506 (2004) · Zbl 1066.92046 · doi:10.1016/j.mcm.2005.01.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.