×

A symmetric family of Yang-Mills fields. (English) Zbl 0801.53015

Summary: We examine a family of finite energy SO(3) Yang-Mills connections over \(S^ 4\), indexed by two real parameters. This family included both smooth connections (when both parameters are odd integers), and connections with a holonomy singularity around 1 or 2 copies of \(RP^ 2\). These singular YM connections interpolate between the smooth solutions. Depending on the parameters, the curvature may be self-dual, anti-self-dual, or neither. For the (anti-) self-dual connections, we compute the formal dimension of the moduli space. For the non-self-dual connections we examine the second variation of the Yang-Mills functional, and count the negative and zero eigenvalues. Each component of the non- self-dual moduli space appears to consist only of conformal copies of a single solution.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
81T13 Yang-Mills and other gauge theories in quantum field theory
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
Full Text: DOI

References:

[1] [ADHM] Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Y.I.: Construction of Instantons. Phys. Lett.65A, 185–187 (1978) · Zbl 0424.14004
[2] [AJ] Atiyah, M.F., Jones, J.D.S.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.61, 97 (1978) · Zbl 0387.55009 · doi:10.1007/BF01609489
[3] [BHMM1] Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The Atiyah-Jones conjecture. Bull. Am. Math. Soc.26, 317–321 (1992) · Zbl 0748.32014 · doi:10.1090/S0273-0979-1992-00286-0
[4] [BHMM2] Boyer, C.P., Hurtubise, J.C., Mann, B.M., Milgram, R.J.: The topology of instanton moduli spaces I: The Atiyah-Jones conjecture. Ann. Math.137, 561–609 (1993) · Zbl 0816.55002 · doi:10.2307/2946532
[5] [BoMo] Bor, G., Montgomery, R.: SO(3) Invariant Yang-Mills Fields Which Are Not Self-Dual. In: Harnad, J., Marsden, J.E. (eds.): Hamiltonian Systems, Transformation Groups, and Spectral Transform Methods. Proceedings, Montreal, 1989, Montreal: Les publications CRM, 1990
[6] [Bor] Bor, G.: Yang-Mills fields which are not Self-Dual. Commun. Math. Phys.145, 393–410 (1992) · Zbl 0764.53049 · doi:10.1007/BF02099144
[7] [BoSe] Bor, G., Segert, J.: Rational solutions of the quadrupole self-duality equation. Preprint, 1993
[8] [DK] Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford: Oxford University Press, 1990 · Zbl 0820.57002
[9] [FHP1] Forgacs, P., Horvath, Z., Palla, L.: An exact fractionally charged self-dual solution. Phys. Rev. Lett.46, 392 (1981) · doi:10.1103/PhysRevLett.46.392
[10] [FHP2] Forgacs, P., Horvath, Z., Palla, L.: One Can Have Noninteger Topological Charge. Z. Phys. C-Particles and Fields12, 359–360 (1982) · doi:10.1007/BF01557580
[11] [K] Kronheimer, P.B.: Embedded surfaces in 4-manifolds. Proceedings of the International Congress of mathematicians (Kyoto 1990), Tokyo Berlin, 1991 · Zbl 0746.53041
[12] [KM] Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces I. Topology32, 773–826 (1992) · Zbl 0799.57007 · doi:10.1016/0040-9383(93)90051-V
[13] [Pa] Parker, T.: Non-minimal Yang-Mills Fields and Dynamics. Invent. Math.107, 397–420 (1992) · Zbl 0764.53020 · doi:10.1007/BF01231895
[14] [R1] Råde, J.: Singular Yang-Mills Fields. Local theory I. J. reine angew. Math. (in press) · Zbl 0795.53024
[15] [R2] Råde, J.: Singular Yang-Mills Fields. Local theory II. J. reine angew. Math. (in press) · Zbl 0830.53024
[16] [SS1] Sadun, L., Segert, J.: Non-Self-Dual Yang-Mills connections with nonzero Chern number. Bull. Am. Math. Soc.24, 163–170 (1991) · Zbl 0722.58014 · doi:10.1090/S0273-0979-1991-15978-1
[17] [SS2] Sadun, L., Segert, J.: Non-Self-Dual Yang-Mills connections with Quadrupole Symmetry. Commun. Math. Phys.145, 363–391 (1992) · Zbl 0765.53020 · doi:10.1007/BF02099143
[18] [SS3] Sadun, L., Segert, J.: Stationary points of the Yang-Mills action. Commun. Pure Appl. Math.45, 461–484 (1992) · Zbl 0771.58008 · doi:10.1002/cpa.3160450405
[19] [SiSi1] Sibner, L.M., Sibner, R.J.: Singular Soblev Connections with Holonomy. Bull. Am. Math. Soc.19, 471–473 (1988) · Zbl 0671.35025 · doi:10.1090/S0273-0979-1988-15703-5
[20] [SiSi2] Sibner, L.M., Sibner, R.J.: Classification of Singular Sobolev Connections by their Holonomy. Commun. Math. Phys.144, 337–350 (1992) · Zbl 0747.53024 · doi:10.1007/BF02101096
[21] [SSU] Sibner, L.M., Sibner, R.J., Uhlenbeck, K.: Solutions to Yang-Mills Equations which are not Self-Dual. Proc. Natl. Acad. Sci. USA86, 8610–8613 (1989) · Zbl 0731.53031 · doi:10.1073/pnas.86.22.8610
[22] [T1] Taubes, C.H.: Stability in Yang-Mills theories. Comm. Math. Phys.91, 235–263 (1983) · Zbl 0524.58020 · doi:10.1007/BF01211160
[23] [T2] Taubes, C.H.: A framework for Morse theory for the Yang-Mills functional. Invent. Math.94, 327–402 (1988) · Zbl 0665.58006 · doi:10.1007/BF01394329
[24] [Ur] Urakawa, H.: Equivariant Theory of Yang-Mills Connections over Riemannian Manifolds of Cohomogeneity One. Indiana Univ. Math. J.37, 753–788 (1988) · Zbl 0673.53020 · doi:10.1512/iumj.1988.37.37037
[25] [W] Hong-Yu Wang: The existence of non-minimal solutions to the Yang-Mills equation with groupSU(2) onS 2 {\(\times\)}S 2 andS 1 {\(\times\)}S 3 . J. Diff. Geom.34, 701–767 (1991) · Zbl 0744.53011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.