×

Non-self-dual Yang-Mills connections with nonzero Chern number. (English) Zbl 0722.58014

We prove the existence of non-self-dual Yang-Mills connections on SU(2) bundles over the four-sphere with standard Riemannian metric. In particular, our proof covers all bundles with second Chern number \(C_ 2\neq \pm 1.\) Existence on the trivial bundle \(C_ 2=0\) was previously established by L. M. Sibner, R. J. Sibner, and K. Uhlenbeck [Proc. Natl. Acad. Sci. USA 86, No.22, 8610-8613 (1989)] via different methods. We consider connections that are invariant under an SU(2) symmetry group acting by bundle morphisms. The Yang-Mills equations reduce to a system of ODE’s with singularities. Existence of invariant Yang-Mills connections is proved via variational methods. The nonexistence of invariant (anti-)self-dual connections is proved by studying the boundary value problem for the associated first-order ODE system. The explicit form of the non-self-dual connections is not known.
Reviewer: J.Segert

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
81T13 Yang-Mills and other gauge theories in quantum field theory
34B15 Nonlinear boundary value problems for ordinary differential equations
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
Full Text: DOI

References:

[1] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel\(^{\prime}\)d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185 – 187. · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[2] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), no. 2, 97 – 118. · Zbl 0387.55009
[3] J. E. Avron, L. Sadun, J. Segert, and B. Simon, Chern numbers, quaternions, and Berry’s phases in Fermi systems, Comm. Math. Phys. 124 (1989), no. 4, 595 – 627. · Zbl 0830.57020
[4] J. E. Avron, L. Sadun, J. Segert, and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett. 61 (1988), no. 12, 1329 – 1332. · doi:10.1103/PhysRevLett.61.1329
[5] Jean-Pierre Bourguignon, H. Blaine Lawson, and James Simons, Stability and gap phenomena for Yang-Mills fields, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1550 – 1553. · Zbl 0408.53023
[6] Gil Bor and Richard Montgomery, \?\?(3) invariant Yang-Mills fields which are not self-dual, Hamiltonian systems, transformation groups and spectral transform methods (Montreal, PQ, 1989) Univ. Montréal, Montreal, QC, 1990, pp. 191 – 198. · Zbl 0776.53018
[7] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), no. 1, 85 – 87. · doi:10.1016/0370-2693(75)90163-X
[8] Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1984. · Zbl 0559.57001
[9] Mitsuhiro Itoh, Invariant connections and Yang-Mills solutions, Trans. Amer. Math. Soc. 267 (1981), no. 1, 229 – 236. · Zbl 0473.53043
[10] Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980. Structure of static gauge theories. · Zbl 0457.53034
[11] Yu. I. Manin, New exact solutions and cohomological analysis of ordinary and supersymmetric Yang-Mills equations, Trudy Mat. Inst. Steklov. 165 (1984), 98 – 114 (Russian). Algebraic geometry and its applications. · Zbl 0554.58053
[12] Yuri I. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988. Translated from the Russian by N. Koblitz and J. R. King. · Zbl 0641.53001
[13] T. Parker, Unstable Yang-Mills fields, preprint; Non-minimal Yang-Mills fields and dynamics, preprint. · Zbl 0764.53020
[14] Richard S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19 – 30. · Zbl 0417.58007
[15] Lorenzo Sadun and Jan Segert, Chern numbers for fermionic quadrupole systems, J. Phys. A 22 (1989), no. 4, L111 – L115. · Zbl 0695.58013
[16] L. M. Sibner, R. J. Sibner, and K. Uhlenbeck, Solutions to Yang-Mills equations that are not self-dual, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 22, 8610 – 8613. · Zbl 0731.53031 · doi:10.1073/pnas.86.22.8610
[17] Clifford Henry Taubes, Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983), no. 2, 235 – 263. · Zbl 0524.58020
[18] Clifford Henry Taubes, On the equivalence of the first and second order equations for gauge theories, Comm. Math. Phys. 75 (1980), no. 3, 207 – 227. · Zbl 0448.58029
[19] Hajime Urakawa, Equivariant theory of Yang-Mills connections over Riemannian manifolds of cohomogeneity one, Indiana Univ. Math. J. 37 (1988), no. 4, 753 – 788. · Zbl 0673.53020 · doi:10.1512/iumj.1988.37.37037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.