×

Classification of singular Sobolev connections by their holonomy. (English) Zbl 0747.53024

In topological quantum dynamics several authors have encountered the existence of non-integral charge, which depend critically on holonomy [see, for example, M. F. Atiyah, Vector bundles on algebraic varieties, Pap. Colloq., Bombay 1984, Stud. Math., Tata Inst. Fundam. Res. 11, 1-33 (1987; Zbl 0688.53027), P. Forgacs, Z. Horvath and L. Palla, Z. Phys. C 12, 359-360 (1982) and P. J. Braam, J. Differ. Geom. 30, No. 2, 425-464 (1989; Zbl 0689.53028)]. The present work goes some way in clarifying and classifying the situation. A limit holonomy condition is stated for a connection on a principal \(SU(2)\)- bundle over a base space with a codimension two singular set. It is shown, that the condition is satisfied in dimension four for finite actions and the singularity can be classified in terms of holonomy. A codimension two singularity theorem is shown to hold in the absence of holonomy.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
81T13 Yang-Mills and other gauge theories in quantum field theory
57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010)
Full Text: DOI

References:

[1] [A] Atiyah, M.F.: Magnetic monopoles in hyperbolic spaces. Vector bundles on algebraic varieties. Tata Institute of Fundamental Research, Bombay (1984), p. 1–33
[2] [B] Braam, P.J.: Magnetic monopoles on three-manifolds. J. Diff. Geom.30, 425–464 (1989) · Zbl 0689.53028
[3] [C] Chakrabarti, A.: Spherically and axially symmetricSU(N) instanton chains with monopole limits. Nucl. Phys. B248, 209–252 (1984) · doi:10.1016/0550-3213(84)90594-7
[4] [F] Floer, A.: Monopoles on asymptotically Euclidean 3-manifolds. Bull. AMS16, 125–127 (1987) · Zbl 0669.53022 · doi:10.1090/S0273-0979-1987-15485-1
[5] [FHP1] Forgacs, P., Horvath, Z., Palla, L.: An exact fractionally charged self-dual solution. Phys. Rev. Lett.46, 392 (1981) · doi:10.1103/PhysRevLett.46.392
[6] [FHP2] Forgacs, P., Horvath, Z., Palla, L.: One can have non-integer topological charge. Z. Phys. C12, 359–360 (1982) · doi:10.1007/BF01557580
[7] [IZ] Itzykson, C., Zuber, J.B.: Quantum field theory. New York: McGraw-Hill 1980 · Zbl 0453.05035
[8] [JT] Jaffe, A., Taubes, C.: Vortices and monopoles. Progress in Physics, Vol. 2. Boston: Birkhäuser 1980 · Zbl 0457.53034
[9] [O1] Otway, T.H.: Removable singularities in coupled Yang-Mills-Dirac fields. Commun. Partial Diff. Eq.12 (9), 1029–1070 (1987) · Zbl 0625.35031 · doi:10.1080/03605308708820517
[10] [O2] Otway, T.H.: Higher-order singularities in coupled Yang-Mills-Higgs fields. Nonlinear Anal.15, 239–244 (1990) · Zbl 0714.58049 · doi:10.1016/0362-546X(90)90161-9
[11] [OS] Otway, T.H., Sibner, L.M.: Point singularities of coupled gauge fields with low energy. Commun. Math. Phys.111, 275–279 (1987) · Zbl 0628.53078 · doi:10.1007/BF01217762
[12] [P] Parker, T.: Gauge theories on four-dimensional manifolds. Commun. Math. Phys.85, 563–602 (1982) · Zbl 0502.53022 · doi:10.1007/BF01403505
[13] [S] Sibner, L.M.: Removable singularities of Yang-Mills fields inR 3. Compositio Math.53, 91–104 (1984) · Zbl 0552.58037
[14] [SS1] Sibner, L.M., Sibner, R.J.: Removable singularities of coupled Yang-Mills fields inR 3. Commun. Math. Phys.93, 1–17 (1984) · Zbl 0552.35028 · doi:10.1007/BF01218636
[15] [SS2] Sibner, L.M., Sibner, R.J.: Singular Sobolev connections with holonomy. Bull AMS19, 471–473 (1988) · Zbl 0671.35025 · doi:10.1090/S0273-0979-1988-15703-5
[16] [SSU] Sibner, L.M., Sibner, R.J., Uhlenbeck, K.: Solutions to Yang-Mills equations that are not self-dual. Proc. Natl. Acad. Sci. USA86, 8610–8613 (1989) · Zbl 0731.53031 · doi:10.1073/pnas.86.22.8610
[17] [Sm] Smith, P.D.: Removable singularities for Yang-Mills-Higgs equations in two dimensions. Ann. Inst. Henri Poincaré7, 561–588 (1990) · Zbl 0782.53022
[18] [T] Taubes, C.H.: Path connected Yang-Mills moduli spaces. J. Diff. Geom.19, 237–392 (1984) · Zbl 0551.53040
[19] [U1] Uhlenbeck, K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11–29 (1982) · Zbl 0491.58032 · doi:10.1007/BF01947068
[20] [U2] Uhlenbeck, K.: Connections withL p bounds on curvature. Commun. Math. Phys.83, 31–42 (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
[21] [W] Warner, F.: Foundations of differentiable maifolds and Lie groups, Scott, Foresman, Glenview, IL (1971). Berlin, Heidelberg, New York: Springer 1984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.