×

Effective computation of Picard groups and Brauer-Manin obstructions of degree two \(K3\) surfaces over number fields. (English) Zbl 1297.14027

The main object of the paper under review is a \(K3\) surface \(X\) of degree 2 defined over a number field \(k\). The authors are interested in the group \(\mathrm{Br}(X)/\mathrm{Br}(k)\), where the Brauer-Manin obstructions to the Hasse principle and weak approximation live. This group is known to be finite A. N. Skorobogatov and Y. G. Zarhin [J. Algebr. Geom. 17, No. 3, 481–502 (2008; Zbl 1157.14008)]. The main result of the paper states that its order can be bounded effectively whenever an explicit equation of \(X\) is given.
On the way, the authors provide several effective assertions which are interesting by their own right, such as an effective Kuga-Satake construction and computation of the Picard module.

MSC:

14G25 Global ground fields in algebraic geometry
14J28 \(K3\) surfaces and Enriques surfaces
14F22 Brauer groups of schemes
11G18 Arithmetic aspects of modular and Shimura varieties

Citations:

Zbl 1157.14008

References:

[1] Alexeev, V.: Log canonical singularities and complete moduli of stable pairs. Preprint (1996)
[2] Allcock, D., Carlson, J.A., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom. 11(4), 659–724 (2002) · Zbl 1080.14532 · doi:10.1090/S1056-3911-02-00314-4
[3] Allcock, D., Carlson, J.A., Toledo, D.: The moduli space of cubic threefolds as a ball quotient. Mem. Amer. Math. Soc. 209(985) (2011) · Zbl 1211.14002
[4] Artebani, M.: A compactification of $${\(\backslash\)cal M}_3$$ via $$K3$$ surfaces. Nagoya Math. J. 196, 1–26 (2009)
[5] Baily, Jr., W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. (2) 84(3), 442–528 (1966) · Zbl 0154.08602
[6] Bierstone, E., Grigoriev, D., Milman, P., Włodarczyk, J.: Effective Hironaka resolution and its complexity. Asian J. Math. 15(2), 193–228 (2011) · Zbl 1315.14022 · doi:10.4310/AJM.2011.v15.n2.a4
[7] Birkenhake, C., Lange, H.: Complex abelian varieties, 2nd edn. Springer-Verlag, Berlin (2004) · Zbl 1056.14063
[8] Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geom. 6, 543–560 (1972) · Zbl 0249.32018
[9] Bost, J.-B.: Périodes et isogenies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G. Wüstholz). Séminaire Bourbaki 1994/95, Exp. No. 795. Asterisque 237, 115–161 (1996)
[10] Bright, M.: Brauer groups of diagonal quartic surfaces. J. Symbolic Comput. 41(5), 544–558 (2006) · Zbl 1129.14038 · doi:10.1016/j.jsc.2005.10.001
[11] Charles, F.: On the Picard number of $K3$ surfaces over number fields. Algebra & Number Theory (to appear) · Zbl 1316.14069
[12] Colliot-Thélène, J.-L., Skorobogatov, A.N.: Descente galoisienne sur le groupe de Brauer. J. Reine Angew. Math. (to appear) · Zbl 1317.14042
[13] Deligne, P.: La conjecture de Weil pour les surfaces K3. Invent. Math. 15, 206–226 (1972) · Zbl 0219.14022 · doi:10.1007/BF01404126
[14] Derksen, H.: Computation of invariants for reductive groups. Adv. Math. 141, 366–384 (1999) · Zbl 0927.13007 · doi:10.1006/aima.1998.1787
[15] Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983) · Zbl 0588.14026 · doi:10.1007/BF01388432
[16] Freitag, E., Oura, M.: A theta relation in genus 4. Nagoya Math. J. 161, 69–83 (2001) · Zbl 0987.11035
[17] Fujino, O.: Effective base point free theorem for log canonical pairs, II: Angehrn-Siu type theorems. Michigan Math. J. 59(2), 303–312 (2010) · Zbl 1201.14010 · doi:10.1307/mmj/1281531458
[18] van Geemen, B.: Kuga-Satake varieties and the Hodge conjecture. In: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998). NATO Sci. Ser. C Math. Phys. Sci., vol. 548, pp. 51–82. Kluwer Acad. Publ., Dordrecht (2000) · Zbl 0987.14008
[19] Grothendieck, A.: Modèles de Néron et monodromie. In: Groupes de monodromie en géométrie algébrique (SGA 7), I. Lect. Notes in Math., vol. 288. pp. 313–523, Springer-Verlag, Berlin (1972)
[20] Hassett, B., Várilly-Alvarado, A., Varilly, P.: Transcendental obstructions to weak approximation on general $K3$ surfaces. Adv. Math. 228(3), 1377–1404 (2011) · Zbl 1228.14030 · doi:10.1016/j.aim.2011.06.017
[21] Hoa, L.T.: Finiteness of Hilbert functions and bounds for Castelnuovo-Mumford regularity of initial ideals. Trans. Amer. Math. Soc. 360(9), 4519–4540 (2008) · Zbl 1148.13009 · doi:10.1090/S0002-9947-08-04424-3
[22] Horikawa, E.: Surjectivity of the period map of $K3$ surfaces of degree $2$. Math. Ann. 228(2), 113–146 (1977) · doi:10.1007/BF01351167
[23] Ieronymou, E.: Diagonal quartic surfaces and transcendental elements of the Brauer group. J. Inst. Math. Jussieu 9(4), 769–798 (2010) · Zbl 1263.14023 · doi:10.1017/S1474748010000149
[24] Ieronymou, E., Skorobogatov, A.N., Zarhin, Y.G.: On the Brauer group of diagonal quartic surfaces. J. London Math. Soc. 83(3), 659–672 (2011) · Zbl 1239.14013
[25] Igusa, J.: On Siegel modular forms of genus two. Amer. J. Math. 84, 175–200 (1962) · Zbl 0133.33301 · doi:10.2307/2372812
[26] Inose, H.: Defining equations of singular $K3$ surfaces and a notion of isogeny. In: Proceedings of the international symposium on algebraic geometry (Kyoto, 1977), pp. 495–502. Kinokuniya Book Store, Tokyo (1978). · Zbl 0411.14009
[27] Kempf, G.R.: Computing invariants. In: Invariant Theory. Lect. Notes in Math., vol. 1278, pp. 81–94. Springer-Verlag, Berlin (1987) · Zbl 0633.14007
[28] Kirwan, F., Lee, R.: The cohomology of moduli spaces of $K3$ surfaces of degree $2$. I. Topology 28(4), 495–516 (1989) · Zbl 0671.14018 · doi:10.1016/0040-9383(89)90008-6
[29] Kleiman, S.: Les théorèmes de finitude pour le foncteur de Picard. In: Théorie des intersections et théorème de Riemann-Roch (SGA 6). Lect. Notes in Math., vol. 225. pp. 616–666, Springer-Verlag, Berlin (1971)
[30] Kondō, S.: A complex hyperbolic structure for the moduli space of curves of genus three. J. Reine Angew. Math. 525, 219–232 (2000) · Zbl 0990.14007
[31] Kondō, S.: The moduli space of curves of genus 4 and Deligne-Mostow’s complex reflection groups. In: Algebraic Geometry 2000, Azumino (Hotaka). Adv. Stud. Pure Math., vol. 36, pp. 383–400. Mathematical Society of Japan, Tokyo (2002) · Zbl 1043.14005
[32] Krasner, M.: Nombre des extensions d’un degré donné d’un corps $\(\backslash\)mathfrak{p}$-adique. In: Les tendances géométriques en algèbre et théorie des nombres (Clemont-Ferrand, 1964), pp. 143–169. CNRS, Paris (1966)
[33] Kresch, A.: CW complexes for complex algebraic surfaces. Exp. Math. 19(4), 413–419 (2010) · Zbl 1246.32027 · doi:10.1080/10586458.2010.10390632
[34] Kresch, A., Tschinkel, Y.: Effectivity of Brauer-Manin obstructions. Adv. Math. 218(1), 1–27 (2008) · Zbl 1142.14013 · doi:10.1016/j.aim.2007.11.017
[35] Kresch, A., Tschinkel, Y.: Effectivity of Brauer-Manin obstructions on surfaces. Adv. Math. 226(5), 4131–4144 (2011) · Zbl 1236.14027 · doi:10.1016/j.aim.2010.11.012
[36] Kuga, M., Satake, I.: Abelian varieties attached to polarized $K3$-surfaces. Math. Ann. 169, 239–242 (1967) · Zbl 0221.14019 · doi:10.1007/BF01399540
[37] Kunyavskiĭ, B.È., Skorobogatov, A.N., Tsfasman, M.A.: Del Pezzo surfaces of degree four. Mém. Soc. Math. France (N.S.) 37 (1989) · Zbl 0705.14039
[38] Looijenga, E.: On quartic surfaces in projective $3$-space. In: Proceedings, Bicentennial Congress Wiskundig genootschap (Amsterdam, 1978). Math. Centre Tracts, vol. 101, part II, pp. 269–274. Mathematica Centrum, Amsterdam (1979)
[39] Looijenga, E.: New compactifications of locally symmetric varieties. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry. CMS Conf. Proc., vol. 6, pp. 341–364. American Mathematical Socirty, Providence (1986). · Zbl 0624.14008
[40] Looijenga, E.: Compactifications defined by arrangements, II: Locally symmetric varieties of type IV. Duke Math. J. 119(3), 527–588 (2003) · Zbl 1079.14045 · doi:10.1215/S0012-7094-03-11933-X
[41] van Luijk, R.: K3 surfaces with Picard number one and infinitely many rational points. Algebra & Number Theory 1(1), 1–15 (2007) · Zbl 1123.14022 · doi:10.2140/ant.2007.1.1
[42] Masser, D., Wüstholz, G.: Periods and minimal abelian subvarieties. Ann. Math. (2) 137(2), 407–458 (1993) · Zbl 0796.11023
[43] Masser, D., Wüstholz, G.: Isogeny estimates for abelian varieties, and finiteness theorems. Ann. Math. (2) 137(3), 459–472 (1993) · Zbl 0804.14019
[44] Masser, D., Wüstholz, G.: Endomorphism estimates for abelian varieties. Math. Z. 215(4), 641–653 (1994) · Zbl 0826.14025 · doi:10.1007/BF02571735
[45] Masser, D., Wüstholz, G.: Factorization estimates for abelian varieties. Inst. Hautes Études Sci. Publ. Math. 81, 5–24 (1995) · Zbl 0854.11030 · doi:10.1007/BF02699374
[46] Masser, D., Wüstholz, G.: Refinements of the Tate conjecture for abelian varieties. In: Abelian varieties (Egloffstein, 1993), pp. 211–223. de Gruyter, Berlin (1995) · Zbl 0876.14029
[47] Mesnager, S.: Construction of the integral closure of an affine domain in a finite field extension of its quotient field. J. Pure Appl. Algebra 194(3), 311–327 (2004) · Zbl 1065.14072 · doi:10.1016/j.jpaa.2004.04.011
[48] Mochizuki, S.: The geometry of the compactification of the Hurwitz scheme. Publ. Res. Inst. Math. Sci. 31(3), 355–441 (1995) · Zbl 0866.14013 · doi:10.2977/prims/1195164048
[49] Mok, N.: Metric rigidity theorems on Hermitian locally symmetric manifolds. World Scientific Publishing Co., Teaneck (1989) · Zbl 0912.32026
[50] Mumford, D.: On the equations defining abelian varieties III. Invent. Math. 3, 215–244 (1967) · Zbl 0173.22903 · doi:10.1007/BF01425401
[51] Mumford, D.: Hirzebruch’s proportionality theorem in the non-compact case. Invent. Math. 42, 239–272 (1977) · Zbl 0365.14012 · doi:10.1007/BF01389790
[52] Mumford, D.: Tata lectures on theta, I. Progr. Math., vol. 28. Birkhäuser Boston, Boston (1983) · Zbl 0509.14049
[53] Mumford, D.: Tata lectures on theta, III. Progr. Math., vol. 97. Birkhäuser Boston, Boston (1991) · Zbl 0744.14033
[54] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, 3rd edn. Springer-Verlag, Berlin (1994) · Zbl 0797.14004
[55] Oura, M., Poor, C., Yuen, D.S.: Towards the Siegel ring in genus four. Int. J. Number Theory 4(4), 563–586 (2008) · Zbl 1166.11016 · doi:10.1142/S1793042108001535
[56] Pauli, S., Roblot, X.-F.: On the computation of all extensions of a $p$-adic field of a given degree. Math. Comp. 70(236), 1641–1659 (2001) · Zbl 0981.11038 · doi:10.1090/S0025-5718-01-01306-0
[57] Pazuki, F.: Theta height and Faltings height. Bull. Soc. Math. France 140(1), 19–49 (2012) · Zbl 1245.14029
[58] Popov, V.L.: Constructive invariant theory. In: Young Tableaux and Schur Functors in Algebra and Geometry (Toruń, 1980). Astérisque, vol. 87–88, pp. 303–334. French Mathematical Society, Paris (1981)
[59] Ribet, K.A.: Endomorphisms of semi-stable abelian varieties over number fields. Ann. Math. (2) 101(3), 555–562 (1975). · Zbl 0305.14016
[60] Rizov, J.: Kuga-Satake abelian varieties of $K3$ surfaces in mixed characteristic. J. Reine Angew. Math. 648, 13–67 (2010) · Zbl 1208.14031
[61] Shah, J.: A complete moduli space for $K3$ surfaces of degree $2$. Ann. Math. (2) 122(3), 485–510 (1980) · Zbl 0412.14016
[62] Shah, J.: Degenerations of $K3$ surfaces of degree $4$. Trans. Amer. Math. Soc. 263(2), 271–308 (1981) · Zbl 0456.14019
[63] Shioda, T., Inose, H.: On singular $K3$ surfaces. In: Complex analysis and algebraic geometry, pp. 119–136. Iwanami Shoten, Tokyo (1977) · Zbl 0374.14006
[64] Skorobogatov, A., Swinnerton-Dyer, P.: $2$-descent on elliptic curves and rational points on certain Kummer surfaces. Adv. Math. 198(2), 448–483 (2005) · Zbl 1085.14021 · doi:10.1016/j.aim.2005.06.005
[65] Skorobogatov, A.N., Zarhin, Y.G.: A finiteness theorem for the Brauer group of abelian varieties and $K3$ surfaces. J. Algebraic Geom. 17(3), 481–502 (2008) · Zbl 1157.14008 · doi:10.1090/S1056-3911-07-00471-7
[66] Swinnerton-Dyer, P.: Arithmetic of diagonal quartic surfaces, II. Proc. London Math. Soc. (3) 80(3), 513–544 (2000) · Zbl 1066.11029
[67] Tsuyumine, S.: On Siegel modular forms of degree three. Amer. J. Math. 108(4), 755–862, 1001–1003 (1986) · Zbl 0602.10015
[68] Whitney, H.: Geometric integration theory. Princeton Univ. Press, Princeton (1957) · Zbl 0083.28204
[69] Wittenberg, O.: Transcendental Brauer-Manin obstruction on a pencil of elliptic curves. In: Arithmetic of Higher-Dimensional Algebraic Varieties (Palo Alto, CA, 2002). Progr. Math., vol. 226, pp. 259–267. Birkhäuser Boston, Boston, MA (2004) · Zbl 1173.11336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.