×

Effectivity of Brauer-Manin obstructions. (English) Zbl 1142.14013

The main object of the paper under review is a smooth, projective, geometrically irreducible variety \(X\) defined over a number field \(k\). The authors are interested in computing the Brauer–Manin obstruction to the Hasse principle and weak approximation. They present an efficient general procedure for computing the obstruction related to the algebraic part of the Brauer group (i.e. to the kernel of the map (\({\text{{Br}}}(X)\to {\text{{Br}}}(X\times _k\bar k)\)) under the assumptions that the geometric Picard group \({\text{{Pic}}}(X\times _k\bar k)\) is finitely generated, torsion-free, and explicitly given by generators (a collection of codimension one geometric cycles) and relations with an explicit Galois action. The authors use one of the earliest counter-examples to the Hasse principle (the Cassels–Guy diagonal cubic surface) to illustrate each step of the proposed algorithm.

MSC:

14G25 Global ground fields in algebraic geometry
14F22 Brauer groups of schemes

Software:

Magma

References:

[1] Artin, M., Brauer-Severi varieties, (Brauer Groups in Ring Theory and Algebraic Geometry. Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981. Brauer Groups in Ring Theory and Algebraic Geometry. Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981, Lecture Notes in Math., vol. 917 (1982), Springer-Verlag: Springer-Verlag Berlin), 194-210 · Zbl 0536.14006
[2] Artin, E.; Tate, J., Class Field Theory (1968), W.A. Benjamin, Inc.: W.A. Benjamin, Inc. New York, Amsterdam · Zbl 0176.33504
[3] Bertram, A.; Ein, L.; Lazarsfeld, R., Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc., 4, 3, 587-602 (1991) · Zbl 0762.14012
[4] Bright, M., Efficient evaluation of the Brauer-Manin obstruction, Math. Proc. Cambridge Philos. Soc., 142, 1, 13-23 (2007) · Zbl 1114.14010
[5] Bright, M.; Swinnerton-Dyer, P., Computing the Brauer-Manin obstructions, Math. Proc. Cambridge Philos. Soc., 137, 1, 1-16 (2004) · Zbl 1057.14022
[6] Brown, K. S., Cohomology of Groups (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0367.18012
[7] (Cassels, J. W.S.; Fröhlich, A., Algebraic Number Theory (1967), Academic Press: Academic Press London) · Zbl 0153.07403
[8] Cassels, J. W.S.; Guy, M. J.T., On the Hasse principle for cubic surfaces, Mathematika, 13, 111-120 (1966) · Zbl 0151.03405
[9] Colliot-Thélène, J.-L.; Kanevsky, D.; Sansuc, J.-J., Arithmétique des surfaces cubiques diagonales, (Diophantine Approximation and Transcendence Theory. Diophantine Approximation and Transcendence Theory, Bonn, 1985. Diophantine Approximation and Transcendence Theory. Diophantine Approximation and Transcendence Theory, Bonn, 1985, Lecture Notes in Math., vol. 1290 (1987), Springer-Verlag: Springer-Verlag Berlin), 1-108 · Zbl 0639.14018
[10] Colliot-Thélène, J.-L.; Sansuc, J.-J., La descente sur les variétés rationnelles, (Journées de Géometrie Algébrique d’Angers. Journées de Géometrie Algébrique d’Angers, July 1979 (1980), Sijthoff & Noordhoff: Sijthoff & Noordhoff Alphen aan den Rijn), 223-237 · Zbl 0451.14018
[11] Colliot-Thélène, J.-L.; Sansuc, J.-J., La descente sur les variétés rationnelles, II, Duke Math. J., 54, 2, 375-492 (1987) · Zbl 0659.14028
[12] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1997), Springer-Verlag: Springer-Verlag New York
[13] A.J. de Jong, A result of Gabber, preprint, 2005; A.J. de Jong, A result of Gabber, preprint, 2005
[14] Draxl, P. K., Skew Fields (1983), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0498.16015
[15] Grothendieck, A., Éléments de géométrie algébrique, I, Inst. Hautes Études Sci. Publ. Math., 4 (1960) · Zbl 0203.23301
[16] Grothendieck, A., Éléments de géométrie algébrique, II, Inst. Hautes Études Sci. Publ. Math., 8 (1961)
[17] Grothendieck, A., Le groupe de Brauer, I-III, (Dix exposés sur la cohomologie des schémas (1968), North-Holland: North-Holland Amsterdam), 46-188 · Zbl 0192.57801
[18] Grothendieck, A., Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Math., vol. 224 (1971), Springer-Verlag: Springer-Verlag Berlin
[19] Harari, D., Obstructions de Brauer-Manin transcendantes, (Number Theory. Number Theory, Paris, 1993-1994. Number Theory. Number Theory, Paris, 1993-1994, London Math. Soc. Lecture Note Ser., vol. 235 (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 75-87 · Zbl 0926.14009
[20] Hasse, H., Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen, J. Reine Angew. Math., 152, 129-148 (1923) · JFM 49.0102.01
[21] Hasse, H., Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen, J. Reine Angew. Math., 152, 205-224 (1923) · JFM 49.0102.02
[22] Hasse, H., Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper, J. Reine Angew. Math., 153, 113-130 (1924) · JFM 49.0114.01
[23] Heintz, J.; Recio, T.; Roy, M.-F., Algorithms in real algebraic geometry and applications to computational geometry, (Discrete and Computational Geometry. Discrete and Computational Geometry, New Brunswick, NJ, 1989/1990. Discrete and Computational Geometry. Discrete and Computational Geometry, New Brunswick, NJ, 1989/1990, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6 (1991), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 137-163 · Zbl 0751.14038
[24] Hensel, K., Theorie der algebraischen Zahlen (1908), B.G. Teubner: B.G. Teubner Leipzig · JFM 39.0269.01
[25] Hensel, K., Zahlentheorie (1913), G.J. Göschen’sche Verlagshandlung: G.J. Göschen’sche Verlagshandlung Berlin · JFM 44.0203.15
[26] Iskovskikh, V. A.; Prokhorov, Y. G., Fano varieties, (Algebraic Geometry, V. Algebraic Geometry, V, Encyclopaedia Math. Sci., vol. 47 (1999), Springer-Verlag: Springer-Verlag Berlin), 1-247 · Zbl 0912.14013
[27] Kresch, A.; Tschinkel, Y., On the arithmetic of del Pezzo surfaces of degree 2, Proc. London Math. Soc. (3), 89, 3, 545-569 (2004) · Zbl 1075.14019
[28] Kreuzer, M.; Robbiano, L., Computational Commutative Algebra, 1 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0956.13008
[29] Krick, T.; Pardo, L. M.; Sombra, M., Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J., 109, 3, 521-598 (2001) · Zbl 1010.11035
[30] Lemmermeyer, F., A note on Pépin’s counterexamples to the Hasse principle for curves of genus 1, Abh. Math. Sem. Univ. Hamburg, 69, 335-345 (1999) · Zbl 0949.11019
[31] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, 1940, thesis, University of Uppsala; C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, 1940, thesis, University of Uppsala · JFM 66.0131.04
[32] A. Logan,; A. Logan,
[33] Manin, Y. I., Le groupe de Brauer-Grothendieck en géométrie diophantienne, (Actes du Congrès International des Mathématiciens, Tome 1. Actes du Congrès International des Mathématiciens, Tome 1, Nice, 1970 (1971), Gauthier-Villars: Gauthier-Villars Paris), 401-411 · Zbl 0239.14010
[34] Manin, Y. I., Cubic Forms: Algebra, Geometry, Arithmetic (1974), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0277.14014
[35] Minkowski, H., Über die Bedingungen, unter welchen zwei quadratische Formen mit rationalen Koeffizienten ineinander rational transformiert werden können, J. Reine Angew. Math., 106, 5-26 (1890) · JFM 22.0216.01
[36] Pépin, T., Nouveaux théorèmes sur l’équation indéterminée \(a x^4 + b y^4 = z^2\), C. R. Acad. Sci Paris, 91, 2, 100-101 (1880)
[37] Reichardt, H., Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math., 184, 12-18 (1942) · JFM 68.0070.01
[38] Serre, J.-P., Corps locaux (1968), Hermann: Hermann Paris
[39] Siu, Y. T., An effective Matsusaka big theorem, Ann. Inst. Fourier (Grenoble), 43, 5, 1387-1405 (1993) · Zbl 0803.32017
[40] Skorobogatov, A. N., Beyond the Manin obstruction, Invent. Math., 135, 2, 399-424 (1999) · Zbl 0951.14013
[41] Sousley, C. P., Invariants and covariants of the Cremona cubic surface, Amer. J. Math., 39, 135-146 (1917) · JFM 46.1001.03
[42] Wittenberg, O., Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, (Arithmetic of Higher-Dimensional Algebraic Varieties. Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, CA, 2002. Arithmetic of Higher-Dimensional Algebraic Varieties. Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, CA, 2002, Progr. Math., vol. 226 (2004), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 259-267 · Zbl 1173.11336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.