×

Multiscale wave-turbulence dynamics in the atmosphere and ocean. Abstracts from the workshop held September 18–24, 2022. (English) Zbl 1520.00016

Summary: The atmosphere and oceans present an ongoing first-rate challenge to science and mathematics because they operate on an extremely broad ranges of scales, from molecular to planetary in length and from below seconds to millennia in time. This is the reason why climate simulations still suffer from leading-order uncertainties. Conceptual simplifications, such as scale-separation assumptions and the neglect of many physical processes, have enabled past progress in understanding the interactions of the basic dynamic constituents, i.e. large-scale mean flows, medium-scale waves and vortices, and small-scale turbulence. But present-day research is stretching the validity of this framework. For example, it is recognized that intermediate-scale waves and vortices are key elements linking all relevant players, and are often characterized by nonlinear interactions on comparable scales and also by additional physical nonlinearities due to effects such as air moisture. Motivated by recent advances in mathematical wave-vortex and wave-wave interaction theory, turbulence theory, and the study of internal wave dynamics as well as their numerical parametrization, the workshop gathered leading experts in these fields to foster a synthesis of new approaches and thereby a new level of understanding and numerical treatment of climate dynamics.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
76Uxx Rotating fluids
Full Text: DOI

References:

[1] Sonmor, L.J. & Klaassen, G.P. Toward a unified theory of gravity wave stability J. Atmos. Sci. 54 (22) (1997), 2655-2680.
[2] Yau, K.H., Klaassen, G.P. & Sonmor, L.J. Principal instabilities of large amplitude inertio-gravity waves Phys. Fluids 16 (4) (2004), 936-951. · Zbl 1186.76587
[3] Mied, R.P. The occurrence of parametric instabilities in finite-amplitude internal gravity waves J. Fluid Mech. 78 (4) (1976), 763-784. · Zbl 0344.76030
[4] Staquet, C. & Sommeria, J. Internal gravity waves: from instabilities to turbulence Annu. Rev. Fluid Mech. 34 (1) (2002), 559-593. · Zbl 1047.76014
[5] Hibiya, T., Nagasawa, M. & Niwa, Y. Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes J. Geophys. Res. 107 (C11)(2002), 3207.
[6] Mackinnon, J.A. & Winters, K.B. Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°Geophys. Res. Lett. 32 (15) (2005), L15605.
[7] Young, W.R., Tsang, Y.-K. & Balmforth, N.J. Near-inertial parametric subharmonic insta-bility J. Fluid Mech. 607 (2008), 25-49. · Zbl 1146.76023
[8] Lamb, K.G. Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography Geophys. Res. Lett. 31 (9) (2004), L09313.
[9] Cole, S.T., Rudnick, D.L., Hodges, B.A. & Martin, J.P. Observations of tidal internal wave beams at Kauai Channel, Hawaii J. Phys. Oceanogr. 39 (2) (2009), 421-436.
[10] Johnston, T.M.S., Rudnick, D.L., Carter, G.S., Todd, R.E. & Cole, S.T. Internal tidal beams and mixing near monterey bay J. Geophys. Res. 116 (2011), C03017.
[11] Fan, B. & Akylas, T.R. Finite-amplitude instabilities of thin internal wave beams: experi-ments and Theory J. Fluid Mech. 904, (2020) A16. · Zbl 1460.76149
[12] T.R. Akylas & C. Kakoutas, Stability of internal gravity wave modes: from triad resonance to broadband instability, J. Fluid Mech (2022), submitted. References · Zbl 1530.76031
[13] Wunsch, C and R. Ferrari, “Vertical Mixing, Energy, and the General Circulation of the Oceans”, Ann. Rev. Fluid Mech., 2004, vol. 36, pp. 281-314. · Zbl 1125.86313
[14] McWilliams, James C. “Submesoscale currents in the ocean.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472.2189 (2016): 20160117. · Zbl 1371.86012
[15] Nikurashin, M. and Vallis, G. K. and Adcroft, A. “Routes to energy dissipation for geostrophic flows in the Southern Ocean”,Nature Geoscience, 2013, vol. 6, pp. 48-51.
[16] Capet, X and J. C. McWilliams and M. J. Molemaker and A. F. Shchepetkin. “Mesoscale to submesoscale transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests”, J. Phys. Ocean., 2008, vol. 38, pp. 29-43.
[17] C. J. R. Garrett and W. H. Munk. “Space-time scales of internal waves.” Geophys. Fluid Dynamics., 1972, pp. 225-264.
[18] Xie, J-H., and Jacques Vanneste. “A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow.” Journal of Fluid Mechanics, 2015, vol. 774, pp. 143-169. · Zbl 1328.76055
[19] Wagner, G. L., and W. R. Young. “A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic.” Journal of Fluid Mechanics, 2016, vol. 802, pp. 806-837. · Zbl 1456.76036
[20] Kafiabad, Hossein A., Miles AC Savva, and Jacques Vanneste. “Diffusion of inertia-gravity waves by geostrophic turbulence.” Journal of Fluid Mechanics, 2019, vol. 869. · Zbl 1415.76730
[21] Savva M. A. C. & Vanneste J. “Scattering of internal tides by barotropic quasigeostrophic flows”. J. Fluid Mech., 2018, vol. 856, pp. 504-530. · Zbl 1415.76110
[22] Dong, Wenjing, Oliver Bühler, and K. Shafer Smith. “Frequency diffusion of waves by unsteady flows”. Journal of Fluid Mechanics, 2020, vol. 905. · Zbl 1460.76148
[23] Eyink, Gregory L., and Hussein Aluie. “Localness of energy cascade in hydrodynamic tur-bulence. I. Smooth coarse graining.” Physics of Fluids, 2009, vol. 21, pp. 107-115. · Zbl 1183.76195
[24] Leonard, A. “Energy cascade in large-eddy simulations of turbulent fluid flows”. Advances in Geophysics A, 1974, vol. 18, pp. 237-248.
[25] Srinivasan, Kaushik, Roy Barkan, and James C. McWilliams. “A forward energy flux at submesoscales driven by frontogenesis.” Journal of Physical Oceanography, 2022, accepted.
[26] Thomas, Leif N. “On the effects of frontogenetic strain on symmetric instability and inertiaDgravity waves.” Journal of Fluid Mechanics, 2012, vol. 711, pp. 620-640. · Zbl 1275.76109
[27] Hoskins, J. H and Bretherton, F.P. “Atmospheric frontogenesis models: Mathematical for-mulation and solution”. J. atmos. Sci., 1972, vol. 29, pp.1-37.
[28] Barkan, R., Srinivasan, K., Yang, L., McWilliams, J. C., Gula, J., and Vic, C. “Oceanic mesoscale eddy depletion catalyzed by internal waves.” Geophys. Res. Letts, 2001, vol. 48(18), pp. e2021GL094376.
[29] R. Ferrari, A. Mashayek, T. J. McDougall, M. Nikurashin, J.-M. Campin, Turning Ocean Mixing Upside Down, Journal of Physical Oceanography 46 (2016), 2239-2261.
[30] C. de Lavergne, G. Madec, J. Le Sommer, A. J. G. Nurser, A. C. Naveira Garabato, On the Consumption of Antarctic Bottom Water in the Abyssal Ocean, Journal of Physical Oceanography 46 (2016), 635-661.
[31] C. Wunsch, On oceanic boundary mixing, Deep Sea Research and Oceanographic Abstracts 17 (1970), 293-301.
[32] O. M. Phillips, On flows induced by diffusion in a stably stratified, Deep Sea Research and Oceanographic Abstracts 17 (1970), 435-443.
[33] S. A. Thorpe, Current and Temperature Variability on the Continental Slope, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 323 (1987), 471-517.
[34] C. Garrett, P. MacCready, P. B. Rhines, Boundary Mixing and Arrested Ekman Layers: Rotating Stratified Flow Near a Sloping Boundary, Annual Review of Fluid Mechanics 25 (1993), 291-321.
[35] J. Callies, Restratification of Abyssal Mixing Layers by Submesoscale Baroclinic Eddies, Journal of Physical Oceanography 48 (2018), 1995-2010.
[36] H. G. Peterson, J. Callies, Rapid Spinup and Spindown of Flow along Slopes, Journal of Physical Oceanography 52 (2022), 579-596.
[37] H. G. Peterson, J. Callies, Coupling between Abyssal Boundary Layers and the Interior Ocean in the Absence of Along-Slope Variations, Journal of Physical Oceanography (in press).
[38] W. Bauer, C. J. Cotter and B. Wingate, Higher order phase averaging for highly oscillatory systems. Multiscale Modelling and Simulation 20(3), (2022), 936-956. · Zbl 1535.70094
[39] T. S. Haut, T. Babb, P. Martinsson and B. Wingate, A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator, IMA Journal of Numerical Analysis 36, (2016), 688-716. · Zbl 1433.65190
[40] D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM Journal on Applied Dynamical Systems 1, (2002), 44-64. · Zbl 1140.37350
[41] A. J. Majda and P. Embid, Averaging over fast gravity waves for geophysical flows with unbalanced initial data, Theoretical and Computational Fluid Dynamics 11, (1998), 155-169. · Zbl 0923.76339
[42] A. .
[43] G. Peddle and T. Haut, B. Wingate, Parareal convergence for oscillatory PDEs with finite time-scale separation. SIAM Journal on Scientific Computing (2019), 41, A3476-A3497. · Zbl 1433.65182
[44] S. Schochet, Fast singular limits of hyperbolic PDEs. Journal of Differential Equations (1994), 114, 476-512. · Zbl 0838.35071
[45] M. Schreiber, M., P. .
[46] S. Peixoto, T. Haut and B. Wingate, Beyond spatial scalability limi-tations with a massively parallel method for linear oscillatory problems. The International Journal of High Performance Computing Applications (2018), 32,913-933.
[47] H. Yamazaki, C. J. Cotter and B. Wingate, Time parallel integration and phase averaging for the nonlinear shallow water equations on the sphere, arXiv preprint arXiv:2103.07706. References
[48] M. Baumgartner and P. Spichtinger, Homogeneous nucleation from an asymptotic point of view, Theor. Comput. Fluid Dyn. 33 (2019), 83-106.
[49] J. C. McWilliams, Submesoscale currents in the ocean, Proc. R. Soc. Lond. A 472, 20160117
[50] N. Grisouard, V. E. Zemskova, Ekman-inertial instability, Phys. Rev. Fluids 5 (2020), 124802
[51] A. Y. Shcherbina, E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, J. C. McWilliams, Statistics of vertical vorticity, divergence, and strain in a developed sub-mesoscale turbulence field, Geophys. Res. Lett. 40, 4706-4711
[52] L. N. Thomas, J. R. Taylor, R. Ferrari, T. M. Joyce, Symmetric instability in the Gulf Stream, Deep-Sea Res. II 91 (2013), 96-110
[53] N. Grisouard, Extraction of Potential Energy from Geostrophic Fronts by Inertial-Symmetric Instabilities, J. Phys. Oceanogr. 48 (2018), 1033-1051
[54] J. C. McWilliams, Oceanic Frontogenesis, Annu. Rev. Mar. Sci. 13 (2021), 227-253
[55] Y. Guan, A. Chattopadhyay, A. Subel and P. Hassanzadeh, Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning, Journal of Computational Physics, 458 (2022). · Zbl 07527717
[56] Y. Guan, A. Subel, A. Chattopadhyay, and P. Hassanzadeh, Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate LES, under review, https://arxiv.org/abs/2201.07347
[57] A. Subel, Y. Guan, A. Chattopadhyay, and P. Hassanzadeh, Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow, under review https://arxiv.org/abs/2206.03198
[58] Kafiabad, H., Grid-based calculation of Lagrangian mean, Journal of Fluid Mechanics, 94 (1990).
[59] Kafiabad, H & Vanneste, J., Computing Lagrangian means, submitted to Journal of Fluid Mechanics, (arXiv preprint arXiv:2208.02682).
[60] F. Lott, R. Rani, A. Podglagen, F. Codron, A. Hertzog, and R. Plougonven, Direct compar-ison between a non orographic gravity wave drag scheme and constant level balloons, (2022) submitted to Journal of Geophysical Research.
[61] B. Ribstein, C. Millet, F. Lott, and A. de la Camara, Can we improve the realism of gravity wave parameterizations by imposing sources at all altitudes in the atmosphere? J. Adv. Model. Earth Systems, (14), (2022) e2021MS002563.
[62] https://doi.org/10.1029/2021MS002563. · doi:10.1029/2021MS002563
[63] L. A. Holt, F. Lott, and co-authors, An evaluation of tropical waves and wave forcing of the QBO in the QBOi models, (2020) Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.3827. · doi:10.1002/qj.3827
[64] A. de la Camara, and F. Lott, and M. Abalos, Climatology of the middle atmosphere in LMDz: Impact of source-related parameterizations of gravity wave drag, (2016), J.Adv. Model. Earth Systems, DOI: 10.1002/2016MS000753. · doi:10.1002/2016MS000753
[65] A. de la Camara and F. Lott, A parameterization of gravity waves emitted by fronts and jets, (42)(2015), Geophys. Res. Letters, doi:10.1002/2015GL063298. · doi:10.1002/2015GL063298
[66] F. Lott and L. Guez, A stochastic parameterization of the gravity waves due to convection and impact on the equatorial stratosphere,, J. Geophys. Res. (118, 16) (2013), 8897-8909. DOI: 10.1002/jgrd.50705. · doi:10.1002/jgrd.50705
[67] S. Boury, I. Sibgatullin, E. Ermanyuk, N. Shmakova, P. Odier, S. Joubaud, L.R.M. Maas, T. Dauxois, Vortex cluster arising from an axisymmetric inertial wave attractor, Journal of Fluid Mechanics 926 (2021), A12-1-36. · Zbl 1487.76029
[68] L.R.M. Maas, Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids, Journal of Fluid Mechanics textbf437 (2001), 13-28. · Zbl 1055.76056
[69] I. Sibgatullin, E. Evgeny, L.R.M. Maas, X. Xu, T. Dauxois, Direct numerical simulation of three-dimensional inertial wave attractors, In: Ivannikov ISPRAS Open Conference (IS-PRAS) IEEE (2017), 137-143.
[70] C. J. Shakespeare, B. K. Arbic and A. McC. Hogg, The Drag on the Barotropic Tide due to the Generation of Baroclinic Motion, Journal of Physical Oceanography 30.12 (2020), 3467-3481.
[71] C. J. Shakespeare, B. K. Arbic and A. McC. Hogg, The Impact of Abyssal Hill Rough-ness on the Benthic Tide, Journal of Advances in Modeling Earth Systems13.5 (2021), e2020MS002376.
[72] C. J. Shakespeare, Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations, Journal of Physical Oceanography50.3 (2020), 655-677.
[73] C. J. Shakespeare and A. McC. Hogg, On the momentum flux of internal tides, Journal of Physical Oceanography 49.4 (2019), 993-1013.
[74] References [Badulin et al. (2007)] Badulin, S. I., Babanin, A. V., Resio, D. & Zakharov, V. Weakly turbulent laws of wind-wave growth. J. Fluid Mech. 591 (2007), 339-378. · Zbl 1168.76332
[75] Hasselmann(1970)] Hasselmann, K. Wave-driven inertial oscillations. Geophysical Fluid Dy-namics 1 (3-4) (1970), 463-502, https://doi.org/10.1080/03091927009365783. · doi:10.1080/03091927009365783
[76] Huang(1979)] Huang, N. E. On surface drift currents in the ocean. J. Fluid Mech. 91 (1) (1979), 191-208. · Zbl 0395.76019
[77] Shrira & Almelah(1979)] Shrira, V. I. & Almelah, R. B. Upper-ocean Ekman current dynamics: a new perspective . J. Fluid Mech., 887, (2020), A24. [Couvelard et al.(2020)] Couvelard, X., Lemarié, F., Samson, G., Redelsperger, J-L., Ardhuin, F., Benshila, R. & Madec, G. Development of a two-way-coupled ocean-wave model: assess-ment on a global NEMO (v3.6)-WW3 (v6.02) coupled configuration. Geosci. Model Dev. 13, (2020), 3067-3090; https://doi.org/10.5194/gmd-13-3067-2020. · doi:10.5194/gmd-13-3067-2020
[78] A. Venaille, L. Gostiaux, J. Sommeria, J., A statistical mechanics approach to mixing in stratified fluids, Journal of Fluid Mechanics. 810 (2017), 554-583. · Zbl 1383.76213
[79] G.L. Mellor, T. Yamada, Development of a turbulence closure model for geophysical fluid problems, Reviews of Geophysics, 20 (1982), 851-875.
[80] S. Thalabard, B. Saint-Michel, E. Herbert, F. Daviaud, F., B. Dubrulle A statistical me-chanics framework for the large-scale structure of turbulent von Kármán flows. New Journal of Physics, 17 (2015), 063006.
[81] A.S. Monin, A.M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR 24 (1954), 163-187.
[82] Stiperski, M. Calaf, Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence, Quarterly Journal of the Royal Meteorological Society 144 (2018), 641-657.
[83] I. Stiperski, M. Calaf,M. Rotach Scaling, anisotropy, and complexity in near-surface atmo-spheric turbulence, Journal of Geophysical Research: Atmosphere 124 (2019), 1428-1448.
[84] I. Stiperski, G. Katul, M. Calaf, Universal return to isotropy of inhomogeneous atmospheric boundary layer turbulence, Physical Review Letters 126 (2021), 194501.
[85] I. Stiperski, M. Chamecki, M. Calaf, Anisotropy of unstably stratified near-surface turbu-lence, Boundary-Layer Meteorology 180 (2021), 363-384.
[86] J. Rotta, Statistische Theorie nichthomogener Turbulenz, Zeitschrift für Physik 129 (1951), 547-572. · Zbl 0042.43304
[87] L. Baker & B. R. Sutherland, The Evolution of Superharmonics Excited by Internal Tides in Non-uniform Stratification, J. Fluid Mech. 891 (2020), R1. · Zbl 1460.76145
[88] B. R. Sutherland & M. S. Dhaliwal, The nonlinear evolution of internal tides. Part 1: The superharmonic cascade, J. Fluid Mech. 948 (2022), A21. · Zbl 1521.76074
[89] B. R. Sutherland & H. Yassin, The nonlinear evolution of internal tides. Part 2: Lagrangian transport by periodic and modulated waves, J. Fluid Mech. 948 (2022), A22. References · Zbl 1521.76075
[90] Torres, H. S. and Klein, P. and Menemenlis, D. and Qiu, B. and Su, Z. and Wang, J. And Chen, S. and Fu, L.-L. 2018 Partitioning Ocean Motions Into Balanced Motions and Internal Gravity Waves: A Modeling Study in Anticipation of Future Space Missions, J. Geophys. Res. Oceans 123 (2018), 8084-8105.
[91] Lien, R. C. and Sanford, T. B. Small-Scale Potential Vorticity in the Upper Ocean Ther-mocline, J. Phys. Oceanogr. 49 (2019), 1845-1872.
[92] Tchilibou, M. and Gourdeau, L. and Morrow, R. and Serazin, G. and Djath, B. and Lyard, F. Spectral signatures of the tropical Pacific dynamics from model and altimetry: A focus on the meso/submesoscale range, Ocean Science 14 (2018), 1283-1301.
[93] Savage, A.C. and Coauthers Spectral decomposition of internal gravity wave sea surface height in global models, J. Geophys. Res. Oceans 122 (2017), 7803-7821.
[94] Bühler, O. and Callies, J. and Ferrari, R. Wave-vortex decomposition of one-dimensional ship-track data, J. Fluid Mech. 756 (2014), 1007-1026. · Zbl 1327.86004
[95] Thomas, J. and Yamada, R. Geophysical turbulence dominated by inertia-gravity waves, J. Fluid Mech. 875 (2019), 71-100. · Zbl 1419.86017
[96] Thomas, J. and Arun, S. Near-inertial waves and geostrophic turbulence, Phys. Rev. Fluids 5 (2020), 014801.
[97] Thomas, J. and Daniel, D. Turbulent exchanges between near-inertial waves and balanced flows, J. Fluid Mech. 902 (2020), A7. · Zbl 1460.86022
[98] Thomas, J. and Daniel, D. Forward flux and enhanced dissipation of geostrophic balanced energy, J. Fluid Mech. 911 (2021), A60. · Zbl 1500.76105
[99] Young W. R. 2021 Inertia-gravity waves and geostrophic turbulence. J. Fluid Mech. 920, F1. · Zbl 1487.76106
[100] Savva M. A. C., Kafiabad H. A. & Vanneste J. 2021 Inertia-gravity-wave scattering by three-dimensional geostrophic turbulence, J. Fluid Mech. 916, A6. · Zbl 1485.76020
[101] Kafiabad H. A., Savva M. A. C. & Vanneste J. 2019 Diffusion of inertia-gravity waves by geostrophic turbulence, J. Fluid Mech. 869, R7. · Zbl 1415.76730
[102] McComas C. H. & Bretherton F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 1397-1412.
[103] Cox M. R., Kafiabad H. A. & Vanneste J. 2022 Inertia-gravity-wave diffusion by geostrophic turbulence: the impact of flow time dependence, submitted, arXiv:2207.09386.
[104] Dong, W., Bühler O. & Smith K. S. 2020 Frequency diffusion of waves by unsteady flows. J. Fluid Mech. 905, R3. · Zbl 1460.76148
[105] V. Boyko, S. Krumscheid and N. Vercauteren Statistical learning of non-linear stochastic differential equations from non-stationary time-series using variational clustering, Multi-scale Modeling & Simulation, in press (2022).
[106] Grimshaw, R., Nonlinear internal gravity waves in a rotating fluid, Journal of Fluid Me-chanics 71(3) (1975), 497-512. · Zbl 0319.76021
[107] Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, Journal of Geophysical Research 86(C10) (1981), 9707-9714.
[108] Becker, E. and Schmitz, G., Climatological effects of orography and land-sea heating con-trasts on the gravity wave-driven circulation of the mesosphere, Journal of the Atmospheric Sciences 60(1) (2003), 103-118.
[109] Young-Joon Kim, Stephen D. Eckermann, Hye-Yeong Chun, An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather predic-tion models, Atmosphere-Ocean 41:1 (2003), 65-98
[110] Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M., Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization, Journal of Climate 23(22) (2010), 5905-5926.
[111] Senf, F. and Achatz, U., On the impact of middle-atmosphere thermal tides on the prop-agation and dissipation of gravity waves, Journal of Geophysical Research Atmospheres 116(24) (2011)
[112] Muraschko, J., Fruman, M. D., Achatz, U., Hickel, S., and Toledo, Y., On the application of Wentzel-Kramer-Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves, Quarterly Journal of the Royal Meteorological Society 141(688) (2015), 676-697.
[113] Achatz, U., Ribstein, B., Senf, F., and Klein, R., The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: weak and moderately strong stratification, Quarterly Journal of the Royal Meteorological Society 143(702) (2017), 342-361
[114] Wei, J., Bölöni, G., and Achatz, U., Efficient modeling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-Flux Convergence versus Direct Approach, Journal of the Atmospheric Sciences 76(9) (2019), 2715-2738
[115] Bölöni, G., Kim, Y.-H., Borchert, S., and Achatz, U., Towards transient subgrid-scale gravity wave representation in atmospheric models. Part I: Propagation model including direct wave-mean-flow interactions, Journal of the Atmospheric Sciences 78(4) (2021), 1317-1338
[116] Kim, Y.-H., Bölöni, G., Borchert, S., Chun, H.-Y., and Achatz, U., Toward transient subgrid-scale gravity wave representation in atmospheric models. part ii: Wave intermittency simu-lated with convective sources, Journal of the Atmospheric Sciences 78(4) (2021), 1339-1357. References
[117] Wagner, Gregory L and Chini, Gregory P and Ramadhan, Ali and Gallet, Basile and Fer-rari, Raffaele, Near-inertial waves and turbulence driven by the growth of swell, Journal of Physical Oceanography, 51:5 (2021), 1337-1351
[118] Craik, Alex D. D. and Leibovich, Sidney, A rational model for Langmuir circulations, Jour-nal of Fluid Mechanics, 73:3 (1976), 401-426 · Zbl 0324.76014
[119] Huang, N. E., On surface drift currents in the ocean, Journal of Fluid Mechanics, 91:1 (1979), 191-208 · Zbl 0395.76019
[120] Sullivan, Peter P and McWilliams, James C, Dynamics of winds and currents coupled to surface waves, Annual Review of Fluid Mechanics, 42 (2010), 19-42 · Zbl 1345.76032
[121] Melville, W Kendall, The role of surface-wave breaking in air-sea interaction, Annual review of fluid mechanics, 28:1 (1996), 279-321
[122] Suzuki, Nobuhiro and Fox-Kemper, Baylor, Understanding Stokes forces in the wave-averaged equations, Journal of Geophysical Research: Oceans, 121:5 (2016), 3579-3596
[123] McWilliams, James C and Sullivan, Peter P and Moeng, Chin-Hoh, Langmuir turbulence in the ocean, Journal of Fluid Mechanics, 334 (1997), 1-30 · Zbl 0887.76029
[124] Veron, Fabrice and Melville, W Kendall, Experiments on the stability and transition of wind-driven water surfaces, Journal of Fluid Mechanics, 446 (2001), 25-65 · Zbl 1107.76308
[125] Wang, Han and Grisouard, Nicolas and Salehipour, Hesam and Nuz, Alice and Poon, Michael and Ponte, Aurelien L.S., A deep learning approach to extract internal tides scattered by geostrophic turbulence, Geophysical Research Letters 49/11 (2022), e2022GL099400.
[126] Arbic, Brian K and Richman, James G and Shriver, Jay F and Timko, Patrick G and Metzger, E Joseph and Wallcraft, Alan J, Global modeling of internal tides: Within an eddying ocean general circulation model, Oceanography 25/2 (2012), 20-29. Reporter: Oliver Bühler
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.