×

Finite-amplitude instabilities of thin internal wave beams: experiments and theory. (English) Zbl 1460.76149

Summary: A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.

MSC:

76B55 Internal waves for incompressible inviscid fluids
76-05 Experimental work for problems pertaining to fluid mechanics

Keywords:

internal waves
Full Text: DOI

References:

[1] Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T.2012Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids24 (8), 086602.
[2] Bourget, B., Dauxois, T., Joubaud, S. & Odier, P.2013Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech.723, 1-20. · Zbl 1287.76005
[3] Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P. & Joubaud, S.2014Finite-size effects in parametric subharmonic instability. J. Fluid Mech.759, 739-750.
[4] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T.2016Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech.793, 109-131.
[5] Clark, H. A. & Sutherland, B. R.2010Generation, propagation, and breaking of an internal wave beam. Phys. Fluids22 (7), 076601. · Zbl 1190.76026
[6] Dauxois, T., Joubaud, S., Odier, P. & Venaille, A.2018Instabilities of internal gravity wave beams. Annu. Rev. Fluid Mech.50 (1), 131-156. · Zbl 1384.76018
[7] Ermanyuk, E. V. & Gavrilov, N. V.2008On internal waves generated by large-amplitude circular and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid. J. Fluid Mech.613, 329-356. · Zbl 1151.76319
[8] Fan, B.2020 Instabilities of finite-width internal wave beams. PhD thesis, Massachusetts Institute of Technology.
[9] Fan, B. & Akylas, T. R.2019Effect of background mean flow on PSI of internal wave beams. J. Fluid Mech.869, R1. · Zbl 1415.76104
[10] Fan, B., Kataoka, T. & Akylas, T. R.2018On the interaction of an internal wavepacket with its induced mean flow and the role of streaming. J. Fluid Mech.838, R1. · Zbl 1419.76161
[11] Fovell, R., Durran, D. & Holton, J. R.1992Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci.49 (16), 1427-1442.
[12] Hazewinkel, J., Van Breevoort, P., Dalziel, S. B. & Maas, L. R. M.2008Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech.598, 373-382. · Zbl 1151.76325
[13] Hibiya, T., Nagasawa, M. & Niwa, Y.2002Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res.107 (C11), 3207.
[14] Hurley, D. G. & Keady, G.1997The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech.351, 119-138. · Zbl 0931.76019
[15] Jamin, T., Kataoka, T., Dauxois, T. & Akylas, T. R.2020Long-time dynamics of internal wave streaming. J. Fluid Mech. (to appear).
[16] Johnston, T. M. S., Rudnick, D. L., Carter, G. S., Todd, R. E. & Cole, S. T.2011Internal tidal beams and mixing near monterey bay. J. Geophys. Res.116, C03017.
[17] Jouve, L. & Ogilvie, G. I.2014Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. J. Fluid Mech.745, 223-250.
[18] Karimi, H. H. & Akylas, T. R.2014Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech.757, 381-402. · Zbl 1416.76048
[19] Karimi, H. H. & Akylas, T. R.2017Near-inertial parametric subharmonic instability of internal wave beams. Phys. Rev. Fluids2 (7), 074801.
[20] Kataoka, T. & Akylas, T. R.2013Stability of internal gravity wave beams to three-dimensional modulations. J. Fluid Mech.736, 67-90. · Zbl 1294.76140
[21] Kataoka, T. & Akylas, T. R.2015On three-dimensional internal gravity wave beams and induced large-scale mean flows. J. Fluid Mech.769, 621-634. · Zbl 1422.76057
[22] Kataoka, T., Ghaemsaidi, S. J., Holzenberger, N., Peacock, T. & Akylas, T. R.2017Tilting at wave beams: a new perspective on the St. Andrew’s Cross. J. Fluid Mech.830, 660-680. · Zbl 1421.76079
[23] Klostermeyer, J.1991Two- and three-dimensional parametric instabilities in finite-amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn.61 (1-4), 1-25.
[24] Lamb, K. G.2004Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett.31 (9), L09313.
[25] Lighthill, M. J.1978Waves in Fluids. Cambridge University Press. · Zbl 0375.76001
[26] Mackinnon, J. A. & Winters, K. B.2005Subtropical catastrophe: significant loss of low-mode tidal energy at \(28.9^{\circ }\). Geophys. Res. Lett.32 (15), L15605.
[27] Mercier, M. J., Garnier, N. B. & Dauxois, T.2008Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids20 (8), 086601. · Zbl 1182.76508
[28] Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T.2010New wave generation. J. Fluid Mech.657, 308-334. · Zbl 1197.76041
[29] Mied, R. P.1976The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J. Fluid Mech.78 (4), 763-784. · Zbl 0344.76030
[30] Mowbray, D. E. & Rarity, B. S. H.1967A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech.28, 1-16.
[31] Onuki, Y. & Tanaka, Y.2019Instabilities of finite-amplitude internal wave beams. Geophys. Res. Lett.46, 7527-7535.
[32] Peacock, T., Echeverri, P. & Balmforth, N. J.2008An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr.38 (1), 235-242.
[33] Schatz, M. F., Barkley, D. & Swinney, H. L.1995Instability in a spatially periodic open flow. Phys. Fluids7 (2), 344-358.
[34] Scolan, H., Ermanyuk, E. & Dauxois, T.2013Nonlinear fate of internal wave attractors. Phys. Rev. Lett.110, 234501.
[35] Shmakova, N. D. & Flór, J.-B.2019Nonlinear aspects of focusing internal waves. J. Fluid Mech.862, R4. · Zbl 1415.76111
[36] Sonmor, L. J. & Klaassen, G. P.1997Toward a unified theory of gravity wave stability. J. Atmos. Sci.54 (22), 2655-2680.
[37] Staquet, C. & Sommeria, J.2002Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech.34 (1), 559-593. · Zbl 1047.76014
[38] Sutherland, B. R. & Linden, P. F.2002Internal wave excitation by a vertically oscillating elliptical cylinder. Phys. Fluids14 (2), 721-731. · Zbl 1184.76540
[39] Tabaei, A. & Akylas, T. R.2003Nonlinear internal gravity wave beams. J. Fluid Mech.482, 141-161. · Zbl 1057.76010
[40] Thomas, N. H. & Stevenson, T. N.1972A similarity solution for viscous internal waves. J. Fluid Mech.54, 495-506. · Zbl 0247.76095
[41] Young, W. R., Tsang, Y.-K. & Balmforth, N. J.2008Near-inertial parametric subharmonic instability. J. Fluid Mech.607, 25-49. · Zbl 1146.76023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.