×

Parareal convergence for oscillatory PDEs with finite time-scale separation. (English) Zbl 1433.65182

In [SIAM J. Sci. Comput. 36, No. 2, 693–713 (2014; Zbl 1321.65131)], the second and third authors present a new coarse propagator for the parareal method applied to oscillatory PDEs that exhibit time-scale separation and show, under certain regularity constraints, superlinear convergence which leads to significant parallel speedups over standard parareal methods. The error bound depends on the degree of time-scale separation, \(\epsilon\), and the coarse time step, \(\Delta T\), and relies on a bound that holds only in the limit of small \(\epsilon\). The main result of the present paper is a generalization of this error bound that also holds for finite values of \(\epsilon\), which can be important for applications in the absence of scale separation. The new error bound is found to depend on an additional parameter, \(\eta\), the averaging window used in the nonlinear term of the coarse propagator. The new proof gives insight into how the parareal method can converge even for finite values of \(\epsilon\). It is also a significant technical advance over the proof presented in [loc. cit.]; it requires the introduction of a stiffness regulator function that allows the authors to control the oscillatory stiffness in the nonlinear term. The new convergence concepts developed in the new proof are confirmed using numerical simulations.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65D30 Numerical integration
65B99 Acceleration of convergence in numerical analysis
65L04 Numerical methods for stiff equations
68W10 Parallel algorithms in computer science
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
65Y05 Parallel numerical computation
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1321.65131

References:

[1] G. Ariel, S. J. Kim, and R. Tsai, Parareal multiscale methods for highly oscillatory dynamical systems, SIAM J. Sci. Comput., 38 (2016), pp. A3540-A3564, https://doi.org/10.1137/15M1011044. · Zbl 1353.65066
[2] C. Audouze, M. Massot, and S. Volz, Symplectic Multi-Time Step Parareal Algorithms Applied to Molecular Dynamics, 2009, https://hal.archives-ouvertes.fr/hal-00358459.
[3] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah, Parallel-in-time molecular-dynamics simulations, Phys. Rev. E, 66 (2002), 057701, https://doi.org/10.1103/PhysRevE.66.057701.
[4] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put, in Recent Developments in Domain Decomposition Methods, L. F. Pavarino and A. Toselli, eds., Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin, Heidelberg, 2002, pp. 189-202, https://doi.org/10.1007/978-3-642-56118-4_12. · Zbl 1022.65096
[5] G. Bal and Q. Wu, Symplectic parareal, in Domain Decomposition Methods in Science and Engineering XVII, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, eds., Lect. Notes Comput. Sci. Eng. 60, Springer, Berlin, Heidelberg, 2008, pp. 401-408. · Zbl 1140.65372
[6] N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillations, Gordon and Breach, New York, 1961. · Zbl 0151.12201
[7] T. Davies, A. Staniforth, N. Wood, and J. Thuburn, Validity of anelastic and other equation sets as inferred from normal-mode analysis, Q. J. R. Meteorol. Soc., 129 (2003), pp. 2761-2775, https://doi.org/10.1256/qj.02.1951.
[8] P. F. Embid and A. J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations, 21 (1996), pp. 619-658. · Zbl 0849.35106
[9] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications, Internat. J. Numer. Methods Engrg., 58 (2003), pp. 1397-1434, https://doi.org/10.1002/nme.860. · Zbl 1032.74701
[10] P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the Navier-Stokes equations, in Domain Decomposition Methods in Science and Engineering, T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick, R. Kornhuber, R. Hoppe, J. Priaux, O. Pironneau, O. Widlund, and J. Xu, eds., Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, Heidelberg, 2005, pp. 433-440, https://doi.org/10.1007/3-540-26825-1_44. · Zbl 1309.76060
[11] M. J. Gander and E. Hairer, Analysis for parareal algorithms applied to Hamiltonian differential equations, J. Comput. Appl. Math., 259 (2014), pp. 2-13. · Zbl 1291.65209
[12] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput, 29 (2007), pp. 556-578, https://doi.org/10.1137/05064607X. · Zbl 1141.65064
[13] I. Garrido, M. S. Espedal, and G. E. Fladmark, A convergent algorithm for time parallelization applied to reservoir simulation, in Domain Decomposition Methods in Science and Engineering, T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick, R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, eds., Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, Heidelberg, 2005, pp. 469-476, https://doi.org/10.1007/3-540-26825-1_48. · Zbl 1228.76107
[14] T. Haut and B. Wingate, An asymptotic parallel-in-time method for highly oscillatory PDEs, SIAM J. Sci. Comput., 36 (2014), pp. A693-A713, https://doi.org/10.1137/130914577. · Zbl 1321.65131
[15] T. S. Haut, T. Babb, P. G. Martinsson, and B. A. Wingate, A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator, IMA J. Numer. Anal., 36 (2016), pp. 688-716. · Zbl 1433.65190
[16] L. He, The reduced basis technique as a coarse solver for parareal in time simulations, J. Comput. Math., 28 (2010), pp. 676-692. · Zbl 1240.65291
[17] S. G. Johnson, Saddle-point integration of \(C_\infty \) “bump” functions, preprint, https://arxiv.org/abs/1508.04376, 2015.
[18] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), pp. 481-524. · Zbl 0476.76068
[19] B. N. Lawrence, M. Rezny, R. Budich, P. Bauer, J. Behrens, M. Carter, W. Deconinck, R. Ford, C. Maynard, S. Mullerworth, C. Osuna, A. Porter, K. Serradell, S. Valcke, N. Wedi, and S. Wilson, Crossing the chasm: How to develop weather and climate models for next generation computers?, Geosci. Model Dev., 11 (2018), pp. 1799-1821, https://doi.org/10.5194/gmd-11-1799-2018.
[20] F. Legoll, T. Lelièvre, and G. Samaey, A micro-macro parareal algorithm: Application to singularly perturbed ordinary differential equations, SIAM J. Sci. Comput., 35 (2013), pp. A1951-A1986, https://doi.org/10.1137/120872681. · Zbl 1362.65071
[21] J.-L. Lions, Y. Maday, and G. Turinici, A “parareal” in time discretization of PDE’s, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661-668. · Zbl 0984.65085
[22] Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time discretization scheme, Int. J. Quantum Chem., 93 (2003), pp. 223-228.
[23] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes 9, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. · Zbl 1278.76004
[24] L. M. Polvani, J. C. McWilliams, M. A. Spall, and R. Ford, The coherent structures of shallow-water turbulence: Deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation, Chaos, 4 (1994), pp. 177-186, https://doi.org/10.1063/1.166002.
[25] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. 59, 2nd ed., Springer, New York, 2007. · Zbl 1128.34001
[26] S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations, 114 (1994), pp. 476-512. · Zbl 0838.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.