×

From nonlinear micromorphic to nonlinear micropolar shell theory. (English) Zbl 1481.74048

Summary: Introduced in this paper is the complete nonlinear model of the micropolar theory (MPT) for shell-type materials. Considering the three-dimensional kinematic model in a convected curvilinear coordinate system, the Lagrangian description of micromorphic theory (MMT) is formulated first. Due to certain assumptions, i.e. skew-symmetricity of micro-displacement and orthogonality of micro-deformation tensors, the highly nonlinear micropolar continuum theory is obtained. Unlike the conventional knowledge in the literature, it is found that not only MPT is not a simple version of MMT but also the present micropolar formulation can be reduced to the corresponding micromorphic shell elasticity. Also, unlike the Kafadar-Eringen’s nonlinear micropolar model which only predicts the large micro-deformations, the developed micropolar theory is able to investigate the physical behavior in case of large elastic macro-deformations, for the first time. The isogeometric analysis (IGA) solution method with standard base functions is used to prevent the locking issues arising in the low-order finite element analysis (FEA) of thin shells. Accordingly, the proposed IGA micropolar shell model possesses 10-DOFs (degrees of freedom) standing for 7 macro-displacements and 3 micro-rotations. Size / inhomogeneity effects of small-scale / micropolar materials are investigated in the benchmark problems of geometrically nonlinear shells. As a result, it is revealed that the paper contributes to literature by developing the nonlinear micropolar shell theory which is able of capturing large macro- and micro-deformations.

MSC:

74A35 Polar materials
74K25 Shells
Full Text: DOI

References:

[1] Büchter, N.; Ramm, E., 3D-extension of nonlinear shell equations based on the enhanced assumed strain concept, Comput. Method. Appl. Sci., 55-62 (1992)
[2] Bischoff, M.; Ramm, E., On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 46-47, 6933-6960 (2000) · Zbl 1003.74045
[3] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Eng., 37, 15, 2551-2568 (1994) · Zbl 0808.73046
[4] Betsch, P.; Gruttmann, F.; Stein, E., A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Comput. Method. Appl. Mech. Eng., 130, 1-2, 57-79 (1996) · Zbl 0861.73068
[5] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Method. Eng., 40, 23, 4427-4449 (1997) · Zbl 0892.73054
[6] El-Abbasi, N.; Meguid, S., A new shell element accounting for through-thickness deformation, Comput. Method. Appl. Mech. Eng., 189, 3, 841-862 (2000) · Zbl 1011.74068
[7] Sansour, C., A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 3, 194-216 (1995) · Zbl 0827.73044
[8] Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M., Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Continuum Mech. Thermodyn., 31, 3, 715-724 (2019) · Zbl 1442.70006
[9] S.imo, J. C.; Rifai, M., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Method. Eng., 29, 8, 1595-1638 (1990) · Zbl 0724.73222
[10] Başar, Y.; Ding, Y.; Krätzig, W., Finite-rotation shell elements via mixed formulation, Comput. Mech., 10, 3-4, 289-306 (1992) · Zbl 0779.73055
[11] Sze, K.; Zheng, S.-. J., A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis, Comput. Mech., 23, 5-6, 448-456 (1999) · Zbl 0944.74075
[12] Beheshti, A.; Ramezani, S., Nonlinear finite element analysis of functionally graded structures by enhanced assumed strain shell elements, Appl. Math. Model., 39, 13, 3690-3703 (2015) · Zbl 1443.74258
[13] Daszkiewicz, K.; Witkowski, W.; Burzyński, S.; Chróścielewski, J., Robust four-node elements based on Hu-Washizu principle for nonlinear analysis of Cosserat shells, Continuum. Mech. Thermodyn., 31, 1757-1784 (2019)
[14] Sansour, C.; Kollmann, F., Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements, Comput. Mech., 24, 6, 435-447 (2000) · Zbl 0959.74072
[15] Arciniega, R.; Reddy, J., Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Comput. Method. Appl. Mech. Eng., 196, 4-6, 1048-1073 (2007) · Zbl 1120.74802
[16] Arciniega, R.; Reddy, J., Large deformation analysis of functionally graded shells, Int. J. Solids Struct., 44, 6, 2036-2052 (2007) · Zbl 1108.74038
[17] Hussain, M.; N.aeem, M. N.; K.han, M. S.; Tounsi, A., Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports, Comput. Concr., 25, 5, 411-425 (2020)
[18] Bekkaye, T. H.L.; Fahsi, B.; B.ousahla, A. A.; Bourada, F.; Tounsi, A.; B.enrahou, K. H.; Tounsi, A.; A.l-Zahrani, M. M., Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory, Comput. Concr., 26, 5, 439-450 (2020)
[19] Dell’Isola, F.; Andreaus, U.; Placidi, L., At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solid., 20, 8, 887-928 (2015) · Zbl 1330.74006
[20] E.ringen, A. C.; Edelen, D., On nonlocal elasticity, Int. J. Eng. Sci., 10, 3, 233-248 (1972) · Zbl 0247.73005
[21] E.ringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 9, 4703-4710 (1983)
[22] E.ringen, A. C., Linear theory of micropolar elasticity, J. Math. Mech., 909-923 (1966) · Zbl 0145.21302
[23] E.ringen, A. C.; Suhubi, E., Nonlinear theory of simple micro-elastic solids—I, Int. J. Eng. Sci., 2, 2, 189-203 (1964) · Zbl 0138.21202
[24] M.indlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[25] M.indlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 4, 417-438 (1965)
[26] M.indlin, R. D.; Eshel, N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[27] E.ringen, A. C., Nonlocal Continuum Field Theories (2002), Springer Science & Business Media · Zbl 1023.74003
[28] Peddieson, J.; B.uchanan, G. R.; M.cNitt, R. P., Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41, 3-5, 305-312 (2003)
[29] Challamel, N.; Wang, C., The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology, 19, 34, Article 345703 pp. (2008)
[30] Challamel, N.; Zhang, Z.; Wang, C.; Reddy, J.; Wang, Q.; Michelitsch, T.; Collet, B., On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach, Arch. Appl. Mech., 84, 9-11, 1275-1292 (2014) · Zbl 1341.74094
[31] Benvenuti, E.; Simone, A., One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect, Mech. Res. Commun., 48, 46-51 (2013)
[32] Khodabakhshi, P.; Reddy, J., A unified integro-differential nonlocal model, Int. J. Eng. Sci., 95, 60-75 (2015) · Zbl 1423.74133
[33] Fernández-Sáez, J.; Zaera, R.; Loya, J.; Reddy, J., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved, Int. J. Eng. Sci., 99, 107-116 (2016) · Zbl 1423.74477
[34] Norouzzadeh, A.; Ansari, R., Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity, Physica E., 88, 194-200 (2017)
[35] Norouzzadeh, A.; Ansari, R.; Rouhi, H., Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach, Appl. Phys. A, 123, 5, 330 (2017)
[36] Yang, F.; Chong, A.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 10, 2731-2743 (2002) · Zbl 1037.74006
[37] L.am, D. C.; Yang, F.; Chong, A.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solid., 51, 8, 1477-1508 (2003) · Zbl 1077.74517
[38] Lim, C.; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solid., 78, 298-313 (2015) · Zbl 1349.74016
[39] Barretta, R.; Feo, L.; Luciano, R.; d.e Sciarra, F. M.; Penna, R., Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation, Composit. Part B, 100, 208-219 (2016)
[40] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., 116, 12-24 (2017) · Zbl 1423.74499
[41] Norouzzadeh, A.; Ansari, R.; Rouhi, H., Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects, Meccanica, 53, 13, 3415-3435 (2018) · Zbl 1532.74077
[42] Norouzzadeh, A.; Ansari, R.; Rouhi, H., Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory, Scientia Iranica, 25, 3, 1864-1878 (2018)
[43] E.ringen, A. C., Foundations of Micropolar Thermoelasticity (1970), Springer · Zbl 0326.73007
[44] Kafadar, C.; E.ringen, A. C., Micropolar media—I the classical theory, Int. J. Eng. Sci., 9, 3, 271-305 (1971) · Zbl 0218.73004
[45] E.ringen, A. C., Microcontinuum Field theories: I. Foundations and Solids (1999), Springer Science & Business Media · Zbl 0953.74002
[46] Randow, C.; Gray, G.; Costanzo, F., A directed continuum model of micro-and nano-scale thin films, Int. J. Solids Struct., 43, 5, 1253-1275 (2006) · Zbl 1119.74480
[47] H.irschberger, C. B.; Kuhl, E.; Steinmann, P., On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation, Comput. Method. Appl. Mech. Eng., 196, 41-44, 4027-4044 (2007) · Zbl 1173.74312
[48] Jeong, J.; Neff, P., Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions, Math. Mech. Solid., 15, 1, 78-95 (2010) · Zbl 1197.74009
[49] Lakes, R., Experimental microelasticity of two porous solids, Int. J. Solids Struct., 22, 1, 55-63 (1986)
[50] E.remeyev, V. A.; L.ebedev, L. P.; C.loud, M. J., Acceleration waves in the nonlinear micromorphic continuum, Mech. Res. Commun., 93, 70-74 (2018)
[51] Ansari, R.; Bazdid-Vahdati, M.; Shakouri, A.; Norouzzadeh, A.; Rouhi, H., Micromorphic first-order shear deformable plate element, Meccanica, 51, 8, 1797-1809 (2016) · Zbl 1388.74078
[52] Ansari, R.; Bazdid-Vahdati, M.; Shakouri, A.; Norouzzadeh, A.; Rouhi, H., Micromorphic prism element, Math. Mech. Solid., 22, 6, 1438-1461 (2017) · Zbl 1371.74255
[53] Ansari, R.; Shakouri, A.; Bazdid-Vahdati, M.; Norouzzadeh, A.; Rouhi, H., A nonclassical finite element approach for the nonlinear analysis of micropolar plates, J. Comput. Nonlinear Dyn., 12, 1, Article 011019 pp. (2017)
[54] Ansari, R.; Norouzzadeh, A.; Shakouri, A.; Bazdid-Vahdati, M.; Rouhi, H., Finite element analysis of vibrating micro-beams and-plates using a three-dimensional micropolar element, Thin-Walled Struct., 124, 489-500 (2018)
[55] Leismann, T.; Mahnken, R., Comparison of hyperelastic micromorphic, micropolar and microstrain continua, Int. J. Non Linear Mech., 77, 115-127 (2015)
[56] Trovalusci, P.; Masiani, R., Non-linear micropolar and classical continua for anisotropic discontinuous materials, Int. J. Solids Struct., 40, 5, 1281-1297 (2003) · Zbl 1062.74514
[57] Altenbach, H.; Eremeyev, V., Strain rate tensors and constitutive equations of inelastic micropolar materials, Int. J. Plast., 63, 3-17 (2014)
[58] Pietraszkiewicz, W.; Eremeyev, V., On natural strain measures of the non-linear micropolar continuum, Int. J. Solid. Struct., 46, 3-4, 774-787 (2009) · Zbl 1215.74004
[59] Pietraszkiewicz, W.; Eremeyev, V., On vectorially parameterized natural strain measures of the non-linear Cosserat continuum, Int. J. Solid. Struct., 46, 11-12, 2477-2480 (2009) · Zbl 1217.74012
[60] H.ughes, T. J.; C.ottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Method. Appl. Mech. Eng., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[61] C.ottrell, J. A.; H.ughes, T. J.; Bazilevs, Y., Isogeometric analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[62] Echter, R.; Oesterle, B.; Bischoff, M., A hierarchic family of isogeometric shell finite elements, Comput. Method. Appl. Mech. Eng., 254, 170-180 (2013) · Zbl 1297.74071
[63] Norouzzadeh, A.; Ansari, R., Nonlinear dynamic behavior of small-scale shell-type structures considering surface stress effects: an isogeometric analysis, Int. J. Non Linear Mech., 101, 174-186 (2018)
[64] Norouzzadeh, A.; Ansari, R.; Darvizeh, M., Large elastic deformation of micromorphic shells. Part I: variational formulation, Math. Mech. Solid., Article 1081286519855112 pp. (2019)
[65] Gallier, J.; Xu, D., Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices, Int. J. Rob. Autom., 18, 1, 10-20 (2003)
[66] E.ringen, A. C.; K.afadar, C. B., Part I. Polar field theories, Continuum Phys., 4, 1-73 (1976)
[67] E.remeyev, V. A.; Pietraszkiewicz, W., Material symmetry group of the non-linear polar-elastic continuum, Int. J. Solids Struct., 49, 14, 1993-2005 (2012)
[68] E.remeyev, V. A.; Pietraszkiewicz, W., Material symmetry group and constitutive equations of micropolar anisotropic elastic solids, Math. Mech. Solid., 21, 2, 210-221 (2016) · Zbl 1332.74003
[69] E.remeyev, V. A., On the material symmetry group for micromorphic media with applications to granular materials, Mech. Res. Commun., 94, 8-12 (2018)
[70] Smith, A., Inequalities between the constants of a linear micro-elastic solid, Int. J. Eng. Sci., 6, 2, 65-74 (1968) · Zbl 0159.56903
[71] N.aghdi, P. M., The theory of shells and plates, Linear Theories of Elasticity and Thermoelasticity, 425-640 (1973), Springer
[72] Shkutin, L., Nonlinear models of deformable momental continua, J. Appl. Mech. Tech. Phys., 21, 6, 111-117 (1980)
[73] Badur, J.; Pietraszkiewicz, W., On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations, Finite Rotations in Structural Mechanics, 19-32 (1986), Springer · Zbl 0606.73079
[74] Zubov, L., Variational principles and invariant integrals for nonlinearly elastic bodies with moment stresses(Variatsionnye printsipy i invariantnye integraly dlia nelineino-uprugikh tel s momentnymi napriazheniiami), Akademiia Nauk SSSR, Izvestiia, Mekhanika Tverdogo Tela, 10-16 (1990)
[75] Merlini, T., A variational formulation for finite elasticity with independent rotation and Biot-axial fields, Comput. Mech., 19, 3, 153-168 (1997) · Zbl 0889.73026
[76] Niktitin, E.; Z.ubov, L. M., Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress, J. Elast., 51, 1, 1-22 (1998) · Zbl 0929.74014
[77] Jeong, J.; Ramézani, H., Enhanced numerical study of infinitesimal non-linear Cosserat theory based on the grain size length scale assumption, Comput. Method. Appl. Mech. Eng., 199, 45-48, 2892-2902 (2010) · Zbl 1231.74018
[78] Genovese, D., Micropolar shells with thickness inflation and independent micro-rotations, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97, 1, 98-109 (2017) · Zbl 1529.74004
[79] Neff, P.; Forest, S., A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results, J. Elast., 87, 2-3, 239-276 (2007) · Zbl 1206.74019
[80] Isbuga, V.; R.egueiro, R. A., Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity, Int. J. Eng. Sci., 49, 12, 1326-1336 (2011) · Zbl 1423.74013
[81] Norouzzadeh, A.; Ansari, R.; Darvizeh, M., Large elastic deformation of micromorphic shells. Part II. Isogeometric analysis, Math. Mech. Solid., Article 1081286519855111 pp. (2019)
[82] Sze, K.; Liu, X.; Lo, S., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 11, 1551-1569 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.