×

Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. (English) Zbl 1120.74802

Summary: In the present study, a finite element computational model for the nonlinear analysis of shell structures is presented. A tensor-based finite element formulation is presented to describe the mathematical model of a shell in a natural and simple way by using curvilinear coordinates. In addition, a family of high-order elements with Lagrangian interpolations is used to avoid membrane and shear locking, and no mixed interpolations are employed. A first-order shell theory with seven parameters is derived with exact nonlinear deformations and under the framework of the Lagrangian description. This approach takes into account thickness stretching and, therefore, 3D constitutive equations are utilized. Numerical simulations and comparisons of the present results with those found in the literature for typical benchmark problems involving isotropic and laminated composites, as well as functionally graded shells, are found to be excellent and show the validity of the developed finite element model. Moreover, the simplicity of this approach makes it attractive for applications in contact mechanics and damage propagation of shells.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Full Text: DOI

References:

[1] Ahmad, S.; Irons, B.; Zienkiewicz, O. C., Analysis of thick and thin shell structures by curved finite elements, Int. J. Numer. Meth. Engrg., 2, 419-451 (1970)
[2] Simo, J. C.; Fox, D. D., On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267-304 (1989) · Zbl 0692.73062
[3] Chinosi, C.; Della Croce, L.; Scapolla, T., Hierarchic finite elements for thin Naghdi shell model, Int. J. Solids Struct., 35, 1863-1880 (1998) · Zbl 0944.74633
[4] Cho, M.; Roh, H. Y., Development of geometrically exact new elements based on general curvilinear coordinates, Int. J. Numer. Meth. Engrg., 56, 81-115 (2003) · Zbl 1026.74070
[5] Chapelle, D.; Oliveira, D. L.; Bucalem, M. L., MITC elements for a classical shell model, Comput. Struct., 81, 523-533 (2003)
[6] Büchter, N.; Ramm, E., Shell theory vs. degeneration – a comparison in large rotation finite element analysis, Int. J. Numer. Meth. Engrg., 34, 39-59 (1992) · Zbl 0760.73041
[7] Lee, P. S.; Bathe, K. J., Insight into finite element shell discretizations by use of the “basic shell mathematical model”, Comput. Struct., 83, 69-90 (2005)
[8] Hinton, E.; Huang, H. C., A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Comput. Struct., 23, 3, 409-431 (1986)
[9] Dvorkin, E.; Bathe, K. J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. Comput., 1, 77-88 (1984)
[10] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[11] Leino, Y.; Pitkäranta, J., On the membrane locking of h-p finite elements in a cylindrical shell problem, Int. J. Numer. Meth. Engrg., 37, 1053-1070 (1994) · Zbl 0799.73071
[12] Pitkäranta, J.; Leino, Y.; Ovaskainen, O.; Piila, J., Shell deformation states and the finite element method: a benchmark study of cylindrical shells, Comput. Methods Appl. Mech. Engrg., 128, 81-121 (1995) · Zbl 0861.73046
[13] Hakula, H.; Leino, Y.; Pitkäranta, J., Scale resolution, locking, and high-order finite element modelling shells, Comput. Methods Appl. Mech. Engrg., 133, 157-182 (1996) · Zbl 0918.73111
[14] Pontaza, J. P.; Reddy, J. N., Least-square finite element formulation for shear deformable shells, Comput. Methods Appl. Mech. Engrg., 194, 2464-2493 (2005) · Zbl 1096.74052
[15] Büchter, N.; Ramm, E., 3D-extension of nonlinear shell equations based on the enhanced assumed strain concept, (Hirsch, Ch., Computational Methods in Applied Sciences (1992), Elsevier Publishers: Elsevier Publishers Amsterdam) · Zbl 0808.73046
[16] Sansour, C., A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194-216 (1995) · Zbl 0827.73044
[17] Simo, J. C.; Rifai, M. S.; Fox, D. D., On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 53-91 (1990) · Zbl 0746.73016
[18] Braun, M.; Bischoff, M.; Ramm, E., Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates, Comput. Mech., 15, 1-18 (1994) · Zbl 0819.73042
[19] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Meth. Engrg., 37, 2551-2568 (1994) · Zbl 0808.73046
[20] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Meth. Engrg., 40, 4427-4449 (1997) · Zbl 0892.73054
[21] Bischoff, M.; Ramm, E., On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 6933-6960 (2000) · Zbl 1003.74045
[22] Brank, B.; Korelc, J.; Ibrahimbegović, A., Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation, Comput. Struct., 80, 699-717 (2002)
[23] Krätzig, W. B., Best transverse shearing and stretching shell theory for nonlinear finite element simulations, Comput. Methods Appl. Mech. Engrg., 103, 135-160 (1993) · Zbl 0767.73074
[24] Betsch, P.; Menzel, A.; Stein, E., On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells, Comput. Methods Appl. Mech. Engrg., 155, 273-305 (1998) · Zbl 0947.74060
[25] Sansour, C.; Kollmann, F. G., Families of 4-nodes and 9-nodes finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements, Comput. Mech., 24, 435-447 (2000) · Zbl 0959.74072
[26] Balah, M.; Al-Ghamedy, H. N., Finite element formulation of a third-order laminated finite rotation shell element, Comput. Struct., 80, 1975-1990 (2002)
[27] Brank, B.; Perić, D.; Damjanić, F. B., On implementation of a four node shell element for thin multilayered elastic shells, Comput. Mech., 16, 341-359 (1995) · Zbl 0848.73060
[28] Vu-Quoc, L.; Tan, X. G., Optimal solid shells for nonlinear analyses of multilayered composites. I. Statics, Comput. Methods Appl. Mech. Engrg., 192, 975-1016 (2003) · Zbl 1091.74524
[29] Başar, Y.; Ding, Y.; Schultz, R., Refined shear-deformation models for composite laminates with finite rotations, Int. J. Solids Struct., 30, 2611-2638 (1993) · Zbl 0794.73036
[30] Arciniega, R. A.; Reddy, J. N., Consistent third-order shell theory with application to composite circular cylinders, AIAA J., 43, 9, 2024-2038 (2005)
[31] Reddy, J. N.; Arciniega, R. A., Shear deformation plate and shell theories: from Stavsky to present, Mech. Adv. Mater. Struct., 11, 535-582 (2004)
[32] R.A. Arciniega, On a tensor-based finite element model for the analysis of shell structures, Ph.D. Dissertation, Department of Mechanical Engineering, Texas A&M University, 2005.; R.A. Arciniega, On a tensor-based finite element model for the analysis of shell structures, Ph.D. Dissertation, Department of Mechanical Engineering, Texas A&M University, 2005.
[33] Chadwick, P., Continuum Mechanics: Concise Theory and Problems (1999), Dover Publications: Dover Publications New York
[34] Naghdi, P. M., Theory of shells and plates, (Flügge, S.; Truesdell, C., Handbuch der Physik, vol. VIa/2 (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0334.73028
[35] Pietraszkiewicz, W., Finite Rotations and Lagrangean Description in the Nonlinear Theory of Shells (1979), Polish Scientific Publishers: Polish Scientific Publishers Warszawa · Zbl 0452.73078
[36] Green, A. E.; Zerna, W., Theoretical Elasticity (1968), Clarendon Press: Clarendon Press Oxford · Zbl 0155.51801
[37] Naghdi, P. M., Foundations of elastic shell theory, (Sneddon, I. N.; Hill, R., Progress in Solid Mechanics, vol. 4 (1963), North-Holland: North-Holland Amsterdam) · Zbl 0388.73081
[38] Başar, Y.; Weichert, D., Nonlinear Continuum Mechanics of Solids (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0946.74001
[39] Reddy, J. N., An Introduction to Nonlinear Finite Element Analysis (2004), Oxford University Press: Oxford University Press New York · Zbl 1057.65087
[40] Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics (2002), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York
[41] Truesdell, C.; Noll, W., The nonlinear field theories, (Flügge, S.; Truesdell, C., Handbuch der Physik, vol. III/2 (1965), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0779.73004
[42] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (2004), CRC Press: CRC Press Boca Raton, FL · Zbl 0899.73002
[43] Başar, Y., Finite-rotation theories for composite laminates, Acta Mech., 98, 159-176 (1993) · Zbl 0771.73054
[44] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Meth. Engrg., 47, 663-684 (2000) · Zbl 0970.74041
[45] Praveen, G. N.; Reddy, J. N., Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, Int. J. Solids Struct., 35, 4457-4476 (1998) · Zbl 0930.74037
[46] Reddy, J. N.; Chin, C. D., Thermomechanical analysis of functionally cylinders and plates, J. Thermal Stresses, 21, 593-626 (1998)
[47] D.D. Fox, A geometrically exact shell theory, Ph.D. Dissertation, Applied Mechanics Division, Stanford University, 1990.; D.D. Fox, A geometrically exact shell theory, Ph.D. Dissertation, Applied Mechanics Division, Stanford University, 1990.
[48] Hughes, T. J.; Pister, K. S., Consistent linearization in mechanics of solids and structures, Comput. Struct., 8, 391-397 (1978) · Zbl 0377.73046
[49] Marsden, J. E.; Hughes, T. J., Mathematical Foundations of Elasticity (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0545.73031
[50] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0891.73001
[51] Liu, I. S., Continuum Mechanics (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 1058.74004
[52] Reddy, J. N., An Introduction to the Finite Element Method (2005), McGraw-Hill: McGraw-Hill New York · Zbl 0561.65079
[53] Bathe, K. J., Finite Element Procedures (1996), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0511.73065
[54] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Fin. Elem. Anal. Des., 40, 1151-1569 (2004)
[55] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[56] Chróścielewski, J.; Makovski, I. J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material nonlinearity, Int. J. Numer. Meth. Engrg., 35, 63-94 (1992) · Zbl 0780.73075
[57] Massin, P.; Al Mikdad, M., Nine node and seven node thick shell elements with large displacements and rotations, Comput. Struct., 80, 835-847 (2002)
[58] Timoshenko, S., Theory of Elasticity (1936), McGraw-Hill: McGraw-Hill New York · JFM 60.1350.01
[59] Sanders, J. L., Nonlinear theories for thin shells, Q. Appl. Math., 21, 21-36 (1963)
[60] Librescu, L., Refined geometrically nonlinear theories of anisotropic laminated shells, Q. Appl. Math., 45, 1-22 (1987) · Zbl 0632.73048
[61] Park, H. C.; Cho, C.; Lee, S. W., An efficient assumed strain element model with six DOF per node for geometrically nonlinear shells, Int. J. Numer. Meth. Engrg., 38, 4101-4122 (1995) · Zbl 0843.73074
[62] Sansour, C.; Bufler, H., An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation, Int. J. Numer. Meth. Engrg., 34, 73-115 (1992) · Zbl 0760.73043
[63] Stander, N.; Matzenmiller, A.; Ramm, E., An assessment of assumed strain methods in finite rotation shell analysis, Engrg. Comput., 6, 58-66 (1989)
[64] Wagner, W.; Gruttmann, F., A simple finite rotation formulation for composite shell elements, Engrg. Comput., 11, 145-176 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.