×

On natural strain measures of the non linear micropolar continuum. (English) Zbl 1215.74004

Summary: We discuss three different ways of defining the strain measures in the non-linear micropolar continuum: (a) by a direct geometric approach, (b) considering the strain measures as the fields required by the structure of local equilibrium conditions, and (c) requiring the strain energy density of the polar-elastic body to satisfy the principle of invariance under superposed rigid-body deformations. The geometric approach (a) generates several two-point deformation measures as well as some Lagrangian and Eulerian strain measures. The ways (b) and (c) allow one to choose those Lagrangian strain measures which satisfy the additional mechanical requirements. These uniquely selected relative strain measures are called the natural ones. All the strain measures discussed here are formulated in the general coordinate-free form. They are valid for unrestricted translations, stretches and changes of orientations of the micropolar body, and are required to identically vanish in the absence of deformation. The relation of the Lagrangian stretch and wryness tensors derived here to the ones proposed in the literature is thoroughly discussed.

MSC:

74A35 Polar materials
74A05 Kinematics of deformation
Full Text: DOI

References:

[1] Antman, S. S.: Nonlinear problems of elasticity, (2005) · Zbl 1098.74001
[2] Atkin, R. J.; Fox, N.: An introduction to the theory of elasticity, (1980) · Zbl 0449.73004
[3] Badur, J.; Pietraszkiewicz, W.: On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations, Finite rotations in structural mechanics, 19-32 (1986) · Zbl 0606.73079
[4] Bertram, A.: Elasticity and plasticity of large deformations, (2005) · Zbl 1189.74002
[5] Bertram, A.; Svendsen, B.: On material objectivity and reduced constitutive equations, Archives of mechanics 53, No. 6, 653-675 (2001) · Zbl 1050.74004
[6] Besdo, D.: Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums, Acta mechanica 20, 105-131 (1974) · Zbl 0294.73003 · doi:10.1007/BF01374965
[7] Billington, E. W.: Introduction to the mechanics and physics of solids, (1986) · Zbl 0614.73001
[8] Chróścielewski, J., Makowski, J., Pietraszkiewicz, W., 2004. Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Warszawa, Wydawnictwo IPPT PAN.
[9] Cosserat, E., Cosserat, F., 1909. Théorie des corps déformables, Herman et Flis, Paris, English translation: NASA TT F-11, 561, NASA, Washington, DC, 1968. · JFM 40.0862.02
[10] Dai, T. -M.: Renewal of basic laws and principles for polar continuum theories (I) – micropolar continua, Applied mathematics and mechanics 24, 1119-1125 (2003) · Zbl 1145.74308 · doi:10.1007/BF02438100
[11] Dłuẓewski, P. H.: Finite deformations of polar elastic media, International journal of solids and structures 30, 2277-2285 (1993) · Zbl 0781.73006
[12] Eremeyev, V. A.; Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells, Journal of elasticity 85, 125-152 (2006) · Zbl 1105.74019 · doi:10.1007/s10659-006-9075-z
[13] Eringen, A. C.; Kafadar, C. B.: Polar field theories, Continuum physics 4, 1-75 (1976)
[14] Eringen, A. C.: Microcontinuum field theory. I. foundations and solids, (1999) · Zbl 0953.74002
[15] Grekova, E.; Zhilin, P.: Basic equations of Kelvin’s medium and analogy with ferromagnets, Journal of elasticity 64, 29-70 (2001) · Zbl 1051.74002 · doi:10.1023/A:1014828612841
[16] Gurtin, M. E.: An introduction to continuous mechanics, (1981) · Zbl 0559.73001
[17] Kafadar, C. B.; Eringen, A. C.: Micropolar media – I. The classical theory, International journal of engineering science 9, 271-305 (1971) · Zbl 0218.73004 · doi:10.1016/0020-7225(71)90040-1
[18] Le, K. C.; Stumpf, H.: Strain measures, integrability condition and frame indifference in the theory of oriented media, International journal of solids and structures 35, No. 9 – 10, 783-798 (1998) · Zbl 0928.74010 · doi:10.1016/S0020-7683(97)00087-5
[19] Libai, A.; Simmonds, J. G.: The nonlinear theory of elastic shells, (1998) · Zbl 0918.73003
[20] Love, A. E. H.: A treatise on the mathematical theory of elasticity, (1927) · JFM 53.0752.01
[21] Lurie, A. I.: Non-linear theory of elasticity, (1990) · Zbl 0715.73017
[22] Lurie, A. I.: Theory of elasticity, (2005)
[23] Makowski, J.; Stumpf, H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation, International journal of solids and structures 26, No. 3, 353-368 (1990) · Zbl 0706.73044 · doi:10.1016/0020-7683(90)90045-W
[24] Marsden, J. E.; Hughes, T. J. R.: Mathematical foundations of elasticity, (1983) · Zbl 0545.73031
[25] Maugin, G. A.: Acceleration waves in simple and linear viscoelastic micropolar materials, International journal engineering science 12, 143-157 (1974) · Zbl 0276.73003 · doi:10.1016/0020-7225(74)90013-5
[26] Maugin, G. A.: On the structure of the theory of polar elasticity, Philosophical transactions of royal society London A 356, 1367-1395 (1998) · Zbl 0916.73005 · doi:10.1098/rsta.1998.0226
[27] Merlini, T.: A variational formulation for finite elasticity with independent rotation and Biot-axial fields, Computational mechanics 19, 153-168 (1997) · Zbl 0889.73026 · doi:10.1007/s004660050165
[28] Murdoch, A. I.: Objectivity in classical continuum physics: a rationale for discarding the ’principle of invariance under superposed rigid body motions’ in favour of purely objective considerations, Continuum mechanics and thermodynamics 15, 309-320 (2003) · Zbl 1068.74515 · doi:10.1007/s00161-003-0121-9
[29] Muschik, W.; Restuccia, L.: Changing the observer and moving materials in continuum physics: objectivity and frame-indifference, Technische mechanik 22, No. 2, 152-160 (2002)
[30] Naumenko, K.; Altenbach, H.: Modeling of creep for structural analysis, (2007) · Zbl 1183.74298
[31] Nikitin, E.; Zubov, L. M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress, Journal of elasticity 51, 1-22 (1998) · Zbl 0929.74014 · doi:10.1023/A:1007569315660
[32] Nistor, I.: Variational principles for Cosserat bodies, International journal of non-linear mechanics 37, 565-569 (2002) · Zbl 1346.74011
[33] Noll, W.: A mathematical theory of the mechanical behavior of continuous media, Archive for rational mechanics and analysis 2, No. 1, 197-226 (1958) · Zbl 0083.39303 · doi:10.1007/BF00277929
[34] Ogden, R. W.: Non-linear elastic deformations, (1984) · Zbl 0541.73044
[35] Pabst, W.: Micropolar materials, Ceramics – silikaty 49, 170-180 (2005)
[36] Pietraszkiewicz, W.; Badur, J.: Finite rotations in the description of continuum deformation, International journal of engineering science 21, 1097-1115 (1983) · Zbl 0521.73033 · doi:10.1016/0020-7225(83)90050-2
[37] Pietraszkiewicz, W.; Chróścielewski, J.; Makowski, J.: On dynamically and kinematically exact theory of shells, Shell structures: theory and applications, 163-167 (2005)
[38] Ramezani, S.; Naghdabadi, R.: Energy pairs in the micropolar continuum, International journal of solids and structures 44, 4810-4818 (2007) · Zbl 1166.74314 · doi:10.1016/j.ijsolstr.2006.12.006
[39] Reissner, E.: On kinematics and statics of finite-strain force and moment stress elasticity, Studies in applied mathematics 52, 93-101 (1973) · Zbl 0269.73040
[40] Reissner, E.: Note on the equations of finite-strain force and moment stress elasticity, Studies in applied mathematics 54, 1-8 (1975) · Zbl 0326.73006
[41] Reissner, E.: A further note on the equations of finite-strain force and moment stress elasticity, Zamp 38, 665-673 (1987) · Zbl 0626.73027 · doi:10.1007/BF00948288
[42] Scarpetta, E.: Some results on well-posedness for a nonlinear theory of micropolar elastostatics, Quarterly journal of mechanics and applied mathematics 42, 1-11 (1989) · Zbl 0691.73010 · doi:10.1093/qjmam/42.1.1
[43] Simmonds, J. G.: The nonlinear thermodynamical theory of shells: descent from 3-dimensions without thickness expansion, Flexible shells, 1-11 (1984) · Zbl 0558.73004
[44] Shkutin, L. I.: Nonlinear models of deformable momental continua, Journal of applied mechanics and technical physics 6, 111-117 (1980)
[45] Shkutin, L.I., 1988. Mechanics of Deformations of Flexible Bodies. Nauka, Novosibirsk (in Russian).
[46] Sneddon, J. N.; Berry, D. S.: The classical theory of elasticity, Handbuch der physik (1958) · Zbl 0103.16601
[47] Steinmann, P.; Stein, E.: A uniform treatment of variational principles for two types of micropolar continua, Acta mechanica 121, 215-232 (1997) · Zbl 0878.73004 · doi:10.1007/BF01262533
[48] Stojanović, R.: Nonlinear micropolar elasticity, Micropolar elasticity, 73-103 (1972)
[49] Svendsen, B.; Bertram, A.: On frame-indifference and form-invariance in constitutive theory, Acta mechanica 132, 195-207 (1999) · Zbl 0933.74004 · doi:10.1007/BF01186967
[50] Toupin, R. A.: Theories of elasticity with couple-stress, Archives for rational mechanics and analysis 17, 85-112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[51] Truesdell, C.; Noll, W.: The nonlinear field theories of mechanics, Handbuch der physik /3, 1-602 (1965) · Zbl 1068.74002
[52] Truesdell, C.; Toupin, R.: The classical field theories, Handbuch der physik /1, 226-793 (1960)
[53] Wang, C. -C.; Truesdell, C.: Introduction to rational elasticity, (1973) · Zbl 0308.73001
[54] Yeremeyev, V. A.; Zubov, L. M.: The theory of elastic and viscoelastic micropolar liquids, Journal of applied mathematics and mechanics 63, 755-767 (1999) · Zbl 0942.76005
[55] Zhilin, P. A.: Mechanics of deformable directed surfaces, International journal of solids and structures 12, 635-648 (1976)
[56] Zubov, L. M.: Variational principles and invariant integrals for non-linearly elastic bodies with couple stresses, Izvestiya akademii nauk SSSR, mekhanika tverdogo tela 6, 10-16 (1990)
[57] Zubov, L. M.: Nonlinear theory of dislocations and disclinations in elastic bodies, (1997) · Zbl 0899.73001
[58] Zubov, L. M.; Eremeev, V. A.: Equations for a viscoelastic micropolar fluid, Doklady physics 41, 598-601 (1996) · Zbl 0929.76006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.