×

Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow. (English) Zbl 1386.76171

Summary: The present contribution introduces a fourth-order moment formalism for particle trajectory crossing (PTC) in the framework of multiscale modeling of disperse multiphase flow. In our previous work, the ability to treat PTC was examined with direct-numerical simulations using either quadrature reconstruction based on a sum of Dirac delta functions denoted as quadrature-based moment methods (QBMM) in order to capture large scale trajectory crossing, or by using low-order hydrodynamics closures in the Levermore hierarchy denoted as kinetic-based moment methods (KBMM) in order to capture small-scale trajectory crossing. Whereas KBMM leads to well-posed PDEs and has a hard time capturing large-scale trajectory crossing for particles with enough inertia, QBMM based on a discrete reconstruction suffers from singularity formation and requires too many moments in order to capture the effect of PTC at both the small scale and the large scale both to small-scale turbulence as well as free transport coupled to drag in an Eulerian mesoscale framework. The challenge addressed in this work is thus twofold: first, to propose a new generation of method at the interface between QBMM and KBMM with less singular behavior and the associated proper mathematical properties, which is able to capture both small-scale and large-scale trajectory crossing, and second to limit the number of moments used for applicability in two-dimensional (2-D) and 3-D configurations without losing too much accuracy in the representation of spatial fluxes. In order to illustrate its numerical properties, the proposed Gaussian extended quadrature method of moments is applied to solve 1-D and 2-D kinetic equations representing finite-Stokes-number particles in a known turbulent fluid flow.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76N15 Gas dynamics (general theory)
35L65 Hyperbolic conservation laws
65D32 Numerical quadrature and cubature formulas
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics

Software:

OPQ

References:

[1] A. Bardow, I. V. Karlin, and A. A. Guzev, {\it Multispeed models in off-lattice Boltzmann simulations}, Phys. Rev. E, 77 (2008), 025701(R).
[2] J.-D. Benamou, {\it Big ray tracing: Multivalued travel time field computation using viscosity solutions of the eikonal equation}, J. Comput. Phys., 128 (1996), pp. 463-474. · Zbl 0860.65052
[3] S. Benyahia, H. Arastoopour, T. M. Knowlton, and H. Massah, {\it Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase}, Powder Technol., 112 (2000), pp. 24-33.
[4] A. E. Beylich, {\it Solving the kinetic equation for all Knudsen numbers}, Phys. Fluids, 12 (2000), pp. 444-465. · Zbl 1149.76318
[5] G. A. Bird, {\it Molecular Gas Dynamics and the Direct Simulation of Gas Flows}, Oxford University Press, Oxford, UK, 1994.
[6] Z. Bouali, C. Pera, and J. Reveillon, {\it Numerical analysis of the influence of two-phase flow mass and heat transfers on n-heptane autoignition}, Combustion Flame, 159 (2012), pp. 2056-2068.
[7] F. Bouchut, {\it On zero pressure gas dynamics}, in Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci. 22, World Scientific River Edge, NJ, 1994, pp. 171-190. · Zbl 0863.76068
[8] F. Bouchut, S. Jin, and X. T. Li, {\it Numerical approximations of pressureless gas and isothermal gas dynamics}, SIAM J. Numer. Anal., 41 (2003), pp. 135-158. · Zbl 1060.76080
[9] Y. Brenier and L. Corrias, {\it A kinetic formulation for multibranch entropy solutions of scalar conservation laws}, Ann. Inst. H. Poincaré, 15 (1998), pp. 169-190. · Zbl 0893.35068
[10] J. J. Brey, J. W. Dufty, C.-S. Kim, and A. Santos, {\it Hydrodynamics for granular flow at low density}, Phys. Rev. E, 58 (1998), p. 4638.
[11] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, {\it Homogeneous cooling state of a low-density granular flow}, Phys. Rev. E, 54 (1996), pp. 3664-3671.
[12] J. E. Broadwell, {\it Shock structure in a simple discrete velocity gas}, Phys. Fluids, 7 (1964), pp. 1243-1247. · Zbl 0123.21102
[13] Z. Cai, Y. Fan, and R. Li, {\it Globally hyperbolic regularization of Grad’s moment system}, Comm. Pure Appl. Math., 67 (2014), pp. 464-518. · Zbl 1307.35182
[14] J. A. Carrillo, A. Majorana, and F. Vecil, {\it A semi-Lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system}, Commun. Comput. Phys., 2 (2007), pp. 1027-1054. · Zbl 1164.82326
[15] C. Cercignani, {\it The Boltzmann Equation and Its Applications}, Springer, New York, 1988. · Zbl 0646.76001
[16] C. Cercignani, {\it Rarefied Gas Dynamics}, Cambridge University Press, Cambridge, UK, 2000. · Zbl 0961.76002
[17] C. Chalons, R. O. Fox, and M. Massot, {\it A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework}, in Proceedings of the Summer Program 2010, Center for Turbulence Research, Stanford University, Stanford, CA, 2010, pp. 347-358.
[18] C. Chalons, D. Kah, and M. Massot, {\it Beyond pressureless gas dynamics: Quadrature-based velocity moment models}, Commun. Math. Sci., 10 (2012), pp. 1241-1272. · Zbl 1282.76160
[19] S. Chapman and T. G. Cowling, {\it The Mathematical Theory of Non-uniform Gases}, 2nd ed., Cambridge University Press, Cambridge, UK, 1961. · Zbl 0063.00782
[20] G.-Q. Chen and H. Liu, {\it Formation of \(δ\)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids}, SIAM J. Math. Anal., 34 (2003), pp. 925-938. · Zbl 1038.35035
[21] Y. Cheng and J. A. Rossmanith, {\it A class of quadrature-based moment-closure methods with application to the Vlasov-Poisson-Fokker-Planck system in the high-field limit}, J. Comput. Appl. Math., 262 (2014), pp. 384-398. · Zbl 1302.76098
[22] S. de Chaisemartin, {\it Eulerian Models and Numerical Simulation of Turbulent Dispersion for Polydisperse Evaporating Sprays}, Ph.D. thesis, Ecole Centrale Paris, France, 2009; .
[23] S. de Chaisemartin, L. Fréret, D. Kah, F. Laurent, R. O. Fox, J. Reveillon, and M. Massot, {\it Eulerian models for turbulent spray combustion with polydispersity and droplet crossing}, C. R. Mécanique, 337 (2009), pp. 438-448. · Zbl 1432.76134
[24] O. Desjardins, R. O. Fox, and P. Villedieu, {\it A quadrature-based moment method for dilute fluid-particle flows}, J. Comput. Phys., 227 (2008), pp. 2514-2539. · Zbl 1261.76027
[25] H. Dette and W. J. Studden, {\it The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis}, Wiley Ser. Probab. Statist., John Wiley & Sons, New York, 1997. · Zbl 0886.62002
[26] G. Dimarco, Q. Li, L. Pareschi, and B. Yan, {\it Numerical methods for plasma physics in collisional regimes}, J. Plasma Phys., 81 (2015).
[27] J. K. Dukowicz, {\it A particle-fluid numerical model for liquid sprays}, J. Comput. Phys., 35 (1980), pp. 229-253. · Zbl 0437.76051
[28] B. Engquist and O. Runborg, {\it Multiphase computations in geometrical optics}, J. Comput. Appl. Math., 74 (1996), pp. 175-192. · Zbl 0947.78001
[29] R. O. Fox, {\it A quadrature-based third-order moment method for dilute gas-particle flow}, J. Comput. Phys., 227 (2008), pp. 6313-6350. · Zbl 1388.76247
[30] R. O. Fox, {\it Optimal moment sets for multivariate direct quadrature methods of moments}, Industrial Engineering Chemistry Res., 48 (2009), pp. 6313-6350. · Zbl 1388.76247
[31] R. O. Fox, {\it Large-eddy-simulation tools for multiphase flows}, Annu. Rev. Fluid Mech., 44 (2012), pp. 47-76. · Zbl 1356.76123
[32] L. Fréret, O. Thomine, J. Reveillon, S. de Chaisemartin, F. Laurent, and M. Massot, {\it On the role of preferential segregation in flame dynamics in polydisperse evaporating sprays}, in Proceedings of the Summer Program 2010, Center for Turbulence Research, Stanford University, Stanford, CA, 2010, pp. 1-10.
[33] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, {\it Lattice gas hydrodynamics in two and three dimensions}, Complex Systems, 1 (1987), pp. 649-707. · Zbl 0662.76101
[34] J. E. Galvin, C. M. Hrenya, and R. D. Wildman, {\it On the role of the Knudsen layer in rapid granular flows}, J. Fluid Mech., 585 (2007), pp. 73-92. · Zbl 1119.76069
[35] R. Garg, C. Narayanan, D. Lakehal, and S. Subramaniam, {\it Accurate numerical estimation of interphase momentum transfer in Lagrangian-Eulerian simulations of dispersed two-phase flows}, Int. J. Multiphase Flow, 33 (2007), pp. 1337-1364.
[36] R. Garg, C. Narayanan, and S. Subramaniam, {\it A numerically convergent Lagrangian-Eulerian simulation method for dispersed two-phase flows}, Int. J. Multiphase Flow, 35 (2009), pp. 376-388.
[37] V. Garzo and J. Dufty, {\it Dense fluid transport for inelastic hard spheres}, Phys. Rev. E, 59 (1999), pp. 5895-5911.
[38] R. Gatignol, {\it Théorie cinétique d’un gaz á répartition discrète de vitesses}, Lecture Notes in Phys. 36, Springer, Berlin, 1975. · Zbl 0193.25701
[39] W. Gautschi, {\it Orthogonal Polynomials: Computation and Approximation}, Oxford University Press, Oxford, UK, 2004. · Zbl 1130.42300
[40] D. Gidaspow, {\it Hydrodynamics of fluidization and heat transfer: Supercomputer modeling}, Appl. Mech. Rev., 39 (1986), pp. 1-22.
[41] D. Gidaspow, {\it Multiphase Flow and Fluidization}, Academic Press, New York, 1994. · Zbl 0789.76001
[42] I. Goldhirsch, {\it Rapid granular flows}, Ann. Rev. Fluid. Mech., 35 (2003), pp. 267-293. · Zbl 1125.76406
[43] I. Goldhirsch, S. H. Noskowicz, and O. Bar-Lev, {\it Theory of granular gases: Some recent results and some open problems}, J. Phys. Condens. Matter, 17 (2005), pp. S2591-S2608.
[44] A. Goldshtein and M. Shapiro, {\it Mechanics of collisional motion of granular materials, 1, General hydrodynamic equations}, J. Fluid Mech., 282 (1995), p. 75. · Zbl 0881.76010
[45] L. Gosse, {\it Using \(k\)-branch entropy solutions for multivalued geometric optics computations}, J. Comput. Phys., 180 (2002), pp. 155-182. · Zbl 0999.78003
[46] L. Gosse, S. Jin, and X. T. Li, {\it On two moment systems for computing multiphase semiclassical limits of the Schrödinger equation}, Math. Models Methods Appl. Sci., 13 (2003), pp. 1689-1723. · Zbl 1055.81013
[47] H. Grad, {\it On the kinetic theory of rarefied gases}, Comm. Pure Appl. Math., 2 (1949), pp. 331-407. · Zbl 0037.13104
[48] N. G. Hadjiconstantinou, A. L. Garcia, M. Z. Bazant, and G. He, {\it Statistical error in particle simulations of hydrodynamic phenomena}, J. Comput. Phys., 187 (2003), pp. 274-297. · Zbl 1047.76578
[49] C. D. Hauck, C. D. Levermore, and A. L. Tits, {\it Convex duality and entropy-based moment closures: Characterizing degenerate densities}, SIAM J. Control Optim., 47 (2008), pp. 1977-2015. · Zbl 1167.49033
[50] J. T. Jenkins, {\it Kinetic theory for nearly elastic spheres}, in Physics of Dry Granular Media, H. J. Hermann, J. P. Hovi, and S. Luding, eds., Kluwer, Dordrecht, the Netherlands, 1998.
[51] J. T. Jenkins and F. Mancini, {\it Balance laws and constitutive relations for plane flows of a dense mixture of smooth, nearly elastic, circular disks}, J. Appl. Mech., 130 (1987), pp. 187-202. · Zbl 0611.76113
[52] J. T. Jenkins and S. B. Savage, {\it A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles}, J. Fluid Mech., 130 (1983), pp. 187-202. · Zbl 0523.76001
[53] S. Jin and X. T. Li, {\it Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner}, Phys. D, 182 (2003), pp. 46-85. · Zbl 1073.81041
[54] S. Jin, H. Liu, S. Osher, and R. Tsai, {\it Computing multi-valued physical observables for the semiclassical limit of the Schrödinger equation}, J. Comput. Phys., 205 (2005), pp. 222-241. · Zbl 1072.65132
[55] M. Junk, {\it Domain of definition of Levermore’s five-moment system}, J. Stat. Phys., 93 (1998), pp. 1143-1167. · Zbl 0952.82024
[56] D. Kah, F. Laurent, L. Fréret, S. de Chaisemartin, R. O. Fox, J. Reveillon, and M. Massot, {\it Eulerian quadrature-based moment models for polydisperse evaporating sprays}, Flow Turbulence Combustion, 55 (2010), pp. 1-26. · Zbl 1410.76328
[57] P. L. C. Lage, {\it On the representation of QMOM as a weighted-residual method-the dual-quadrature method of generalized moments}, Computers Chemical Engineering, 35 (2011), pp. 2186-2203.
[58] P. Lallemand and L. S. Luo, {\it Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability}, Phys. Rev. E, 68 (2003), 036706.
[59] F. Laurent, A. Vié, C. Chalons, R. O. Fox, and M. Massot, {\it A hierarchy of Eulerian models for trajectory crossing in particle-laden turbulent flows over a wide range of Stokes numbers}, in Annual Research Briefs of the Center for Turbulence Research, Stanford University, Stanford, CA, 2012, pp. 193-204.
[60] C. D. Levermore, {\it Moment closure hierarchies for kinetic theories}, J. Stat. Phys., 83 (1996), pp. 1021-1065. · Zbl 1081.82619
[61] X T. Li, J. G. Wöhlbier, S. Jin, and J. H. Booske, {\it Eulerian method for computing multivalued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons}, Phys. Rev. E, 70 (2004), 016502.
[62] H. Liu, S. Osher, and R. Tsai, {\it Multi-valued solution and level set methods in computational high frequency wave propagation}, Commun. Comput. Phys., 1 (2006), pp. 765-804. · Zbl 1120.65110
[63] J. G. McDonald and C. P. T. Groth, {\it Extended fluid-dynamic model for micron-scale flows based on Gaussian moment closure}, in Proceedings of the 6th AIAA Aerospace Sciences Meeting and Exhibit, 2008, pp. 1-18.
[64] J. G. McDonald and C. P. T. Groth, {\it Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution}, Contin. Mech. Thermodyn., 25 (2012), pp. 573-603. · Zbl 1341.76020
[65] J. G. McDonald, J. S. Sachdev, and C. P. T. Groth, {\it Application of Gaussian moment closure to microscale flows with moving embedded boundaries}, AIAA J., 52 (2014), pp. 1839-1857.
[66] J. G. McDonald and M. Torrilhon, {\it Affordable robust moment closures for CFD based on the maximum-entropy hierarchy}, J. Comput. Phys., 251 (2013), pp. 500-523. · Zbl 1349.82057
[67] T. T. Nguyen, F. Laurent, R. O. Fox, and M. Massot, {\it Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes}, J. Comput. Phys., 325 (2016), pp. 129-156. · Zbl 1375.76204
[68] Y. Ogata, H.-N. Im, and T. Yabe, {\it Numerical method for Boltzmann equation with Soroban-grid CIP method}, Commun. Comput. Phys., 2 (2007), pp. 760-782.
[69] S. Ogawa, A. Umemura, and N. Oshima, {\it On the equation of fully fluidized granular materials}, Z. Angew. Math. Phys., 31 (1980), pp. 483-493. · Zbl 0449.76005
[70] B. Perthame, {\it Boltzmann type schemes for compressible Euler equations in one and two space dimensions}, SIAM J. Numer. Anal., 29 (1990), pp. 1-19. · Zbl 0744.76088
[71] S. B. Pope, {\it Turbulent Flows}, Cambridge University Press, Cambridge, UK, 2000. · Zbl 0966.76002
[72] J. Reveillon, {\it DNS of Spray Combustion, Dispersion Evaporation and Combustion}, CISM Courses and Lectures, 492, Springer, New York, 2007. · Zbl 1298.76194
[73] J. Reveillon and F. X. Demoulin, {\it Effects of the preferential segregation of droplets on evaporation and turbulent mixing}, J. Fluid Mech., 583 (2007), pp. 273-302. · Zbl 1116.76042
[74] O. Runborg, {\it Some new results in multiphase geometrical optics}, Math. Model. Numer. Anal., 34 (2000), pp. 53-66. · Zbl 0972.78001
[75] O. Runborg, {\it Mathematical models and numerical methods for high frequency waves}, Commun. Comput. Phys., 2 (2007), pp. 827-880. · Zbl 1164.78300
[76] M. Sabat, A. Vié, A. Larat, and M. Massot, {\it Fully Eulerian simulation of 3D turbulent particle laden flow based on the Anisotropic Gaussian closure}, in Proceedings of the 9th International Conference on Multiphase Flow, Firenze, Italy, 2016. · Zbl 1426.76420
[77] R. P. Schaerer and M. Torrilhon, {\it On singular closures for the 5-moment system in kinetic gas theory}, Commun. Comput. Phys., 17 (2015), pp. 371-400. · Zbl 1373.76287
[78] X. Shan, X. F. Yuan, and H. Chen, {\it Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation}, J. Fluid Mech., 550 (2006), pp. 413-441. · Zbl 1097.76061
[79] J. A. Shohat and J. D. Tamarkin, {\it The Problem of Moments}, American Mathematical Society Math. Surveys, Monogr. 2, AMS, New York, 1943. · Zbl 0063.06973
[80] H. Struchtrup, {\it Macroscopic Transport Equations for Rarefied Gas Flows}, Springer, New York, 2005. · Zbl 1119.76002
[81] H. Struchtrup and M. Torrilhon, {\it Regularization of Grad’s 13-moment equations: Derivation and linear analysis}, Phys. Fluids, 15 (2003), pp. 266-880. · Zbl 1186.76504
[82] M. Torrilhon, {\it Characteristic waves and dissipation in the 3-moment-case}, Contin. Mech. Thermodyn., 12 (2000). · Zbl 0991.76073
[83] M. Torrilhon, {\it Hyperbolic moment equations in kinetic gas theory based on multi-variate Pearson–IV. Distributions}, Commun. Comput. Phys., 7 (2010), pp. 639-673. · Zbl 1364.82050
[84] M. Torrilhon and H. Struchtrup, {\it Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models}, J. Fluid Mech., 513 (2004), pp. 171-198. · Zbl 1107.76069
[85] A. Vié, F. Doisneau, and M. Massot, {\it On the Anisotropic Gaussian closure for the prediction of inertial-particle laden flows}, Commun. Comput. Phys., 17 (2015), pp. 1-46. · Zbl 1373.76329
[86] V. Vikas, Z. J. Wang, A. Passalacqua, and R. O. Fox, {\it Realizable high-order finite-volume schemes for quadrature-based moment methods}, J. Comput. Phys., 230 (2011), pp. 5328-5352. · Zbl 1419.76465
[87] J. C. Wheeler, {\it Modified moments and Gaussian quadrature}, Rocky Mountain J. Math, 4 (1974), pp. 287-296. · Zbl 0309.65009
[88] J. G. Wöhlbier, S. Jin, and S. Sengele, {\it Eulerian calculations of wave breaking and multivalued solutions in a traveling wave tube}, Phys. Plasmas, 12 (2005), 023106.
[89] C. Yuan and R. O. Fox, {\it Conditional quadrature method of moments for kinetic equations}, J. Comput. Phys., 230 (2011), pp. 8216-8246. · Zbl 1231.82007
[90] C. Yuan, F. Laurent, and R. O. Fox, {\it An extended quadrature method of moments for population balance equations}, J. Comput. Phys., 51 (2012), pp. 1-23.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.