×

The Toda flow as a porous medium equation. (English) Zbl 1540.37093

Summary: We describe the geometry of the incompressible porous medium (IPM) equation: we prove that it is a gradient dynamical system on the group of area-preserving diffeomorphisms and has a special double-bracket form. Furthermore, we show its similarities and differences with the dispersionless Toda system. The Toda flow describes an integrable interaction of several particles on a line with an exponential potential between neighbours, while its continuous version is an integrable PDE, whose physical meaning was obscure. Here we show that this continuous Toda flow can be naturally regarded as a special IPM equation, while the key double-bracket property of Toda is shared by all equations of the IPM type, thus manifesting their gradient and non-autonomous Hamiltonian origin. Finally, we comment on Toda and IPM modifications of the QR diagonalization algorithm, as well as describe double-bracket flows in an invariant setting of general Lie groups with arbitrary inertia operators.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids

References:

[1] Balehowsky, T.; Karlsson, C-J; Modin, K., Shape analysis via gradient flows on diffeomorphism groups, Nonlinearity, 3, 6, 862 (2022) · Zbl 1539.58005
[2] Bloch, A.M.: Steepest descent, linear programming, and Hamiltonian flows. Contemp. Math. 114, 77-88 (1990) · Zbl 0729.34028
[3] Bloch, A.; Flaschka, H.; Ratiu, T., A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus, Invent. Math., 113, 511-529 (1993) · Zbl 0806.22012 · doi:10.1007/BF01244316
[4] Bloch, AM; Brockett, RW; Ratiu, TS, Completely integrable gradient flows, Commun. Math. Phys., 147, 57-74 (1992) · Zbl 0766.58027 · doi:10.1007/BF02099528
[5] Brenier, Y., Various formulations and approximations of incompressible fluid motions in porous media, Ann. Math. Qué., 4, 6, 195-206 (2022) · Zbl 1491.76072 · doi:10.1007/s40316-021-00178-2
[6] Brockett, R.W., Bloch, A.M.: Sorting with the dispersionless limit of the Toda lattice. In: Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, Publications CRM, Montreal, 1-11 (1990) · Zbl 0738.35083
[7] Brockett, RW, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra Appl., 146, 79-91 (1991) · Zbl 0719.90045 · doi:10.1016/0024-3795(91)90021-N
[8] Cifani, P.; Viviani, M.; Modin, K., An efficient geometric method for incompressible hydrodynamics on the sphere, J. Comput. Phys., 473, 111772 (2023) · Zbl 07625431 · doi:10.1016/j.jcp.2022.111772
[9] Córdoba, D.; Gancedo, F.; Orive, R., Analytical behavior of two-dimensional incompressible flow in porous media, J. Math. Phys., 48, 065206 (2007) · Zbl 1144.81332 · doi:10.1063/1.2404593
[10] Deift, P.; Nanda, T.; Tomei, C., Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20, 1-22 (1983) · Zbl 0526.65032 · doi:10.1137/0720001
[11] Deift, P.; Trogdon, T., Universality for the Toda algorithm to compute the eigenvalues of a random matrix, Commun. Pure Appl. Math., 73, 505-536 (2018) · Zbl 1454.60012 · doi:10.1002/cpa.21715
[12] Ebin, DG; Marsden, JE, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. Math., 92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[13] Flaschka, H., The Toda lattice, Phys. Rev. B, 9, 1924-1925 (1974) · Zbl 0942.37504 · doi:10.1103/PhysRevB.9.1924
[14] Hoppe, J., Diffeomorphism groups, quantization, and \({{\rm SU}} (\infty )\), Int. J. Mod. Phys. A, 04, 5235-5248 (1989) · Zbl 0707.17018 · doi:10.1142/S0217751X89002235
[15] Hoppe, J.; Yau, S-T, Some properties of matrix harmonics on \(S^2\), Commun. Math. Phys., 195, 67-77 (1998) · Zbl 0984.43005 · doi:10.1007/s002200050379
[16] Khesin, B.; Wendt, R., The Geometry of Infinite-Dimensional Groups (2009), Berlin: Springer, Berlin · Zbl 1160.22001 · doi:10.1007/978-3-540-77263-7
[17] Marsden, JE; Ratiu, TS, Introduction to Mechanics and Symmetry (1999), New York: Springer, New York · Zbl 0933.70003 · doi:10.1007/978-0-387-21792-5
[18] Modin, K., Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms, J. Geom. Anal., 25, 1306-1334 (2015) · Zbl 1330.58009 · doi:10.1007/s12220-014-9469-2
[19] Modin, K.; Viviani, M., A Casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics, J. Fluid Mech., 884, A22 (2020) · Zbl 1460.76182 · doi:10.1017/jfm.2019.944
[20] Modin, K.; Viviani, M., Lie-Poisson methods for isospectral flows, Found. Comput. Math., 20, 889-921 (2020) · Zbl 1450.37073 · doi:10.1007/s10208-019-09428-w
[21] Moser, J.: Finitely many mass points on the line under the influence of an exponential potential-an integrable system. In: Dynamical Systems, Theory and Applications. Springer, pp. 467-497 (1975) · Zbl 0323.70012
[22] Otto, F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math. 52(7), 873-915 (1999) · Zbl 0929.76136
[23] Palais, RS, Foundations of Global Non-linear Analysis (1968), New York: Benjamin, New York · Zbl 0164.11102
[24] Zeitlin, V., Finite-mode analogs of \(2\) D ideal hydrodynamics: coadjoint orbits and local canonical structure, Physica D, 49, 353-362 (1991) · Zbl 0724.76004 · doi:10.1016/0167-2789(91)90152-Y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.