×

Shape analysis via gradient flows on diffeomorphism groups. (English) Zbl 1539.58005

The article under review handles the registration problem modeled as a Riemannian gradient flow on Sobolev diffeomorphisms generated by vector fields on a manifold. The authors handle it by using a gradient method regularized on the space of Riemannian metrics. The effect of transforming a template to a target is quantified through an energy functional, which penalizes non-isometric deformations. The problem is treated first in an abstract context, by considering gradient flows on Lie groups, then, for a generic right-invariant Riemannian metric, the energy functional is obtained via lifting a group action, which generates a momentum map (compare with Proposition 1.2), which allows a geometric description of the gradient. The authors initially obtain abstract global existence results (see e.g. Proposition 2.3, Theorem 2.7 and lemas 3.1 and 3.2). By considering the special case, when the group consists of Sobolev diffeomorphisms of a compact Riemannian manifold, and by overcoming technical difficulties, such as the fact that the space of Sobolev diffeomorphisms of a Hilbert manifold do not form a Lie group with respect to its manifold structure, among other hindernesses, the authors construct, through several lemmas, the proof of their main result, an existence theorem assuring that the modelling gradient flow is well-posed (Theorem 1.1). The technicalities involved in the paper are surpassed by the clear and detailed style of the authors.

MSC:

58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
57R50 Differential topological aspects of diffeomorphisms
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
35F25 Initial value problems for nonlinear first-order PDEs
68U10 Computing methodologies for image processing
92C55 Biomedical imaging and signal processing
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences

Software:

LDDMM

References:

[1] Arnold, V. I., Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 319-61 (1966) · Zbl 0148.45301 · doi:10.5802/aif.233
[2] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Berlin: Springer, Berlin · Zbl 0692.70003
[3] Benamou, J-D; Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 375-93 (2000) · Zbl 0968.76069 · doi:10.1007/s002110050002
[4] Beg, M2003Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomyPhD ThesisJohn Hopkins University
[5] Bruveris, M.; Gay-Balmaz, F.; Holm, D. D.; Ratiu, T. S., The momentum map representation of images, J. Nonlin. Sci., 21, 115-50 (2011) · Zbl 1211.58010 · doi:10.1007/s00332-010-9079-5
[6] Bruveris, M.; Holm, D. D., Geometry of Image Registration: The Diffeomorphism Group and Momentum Maps, pp 19-56 (2015), New York: Springer, New York · Zbl 1348.92094
[7] Bauer, M.; Joshi, S.; Modin, K., Diffeomorphic density matching by optimal information transport, SIAM J. Imag. Sci., 8, 1718-51 (2015) · Zbl 1326.58010 · doi:10.1137/151006238
[8] Bauer, M.; Modin, K., Semi-invariant Riemannian metrics in hydrodynamics, Calc. Var. Partial Differ. Equ., 59, 1-25 (2020) · Zbl 1436.53080 · doi:10.1007/s00526-020-1722-x
[9] Beg, M. F.; Miller, M. I.; Trouvé, A.; Younes, L., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comp. Vis., 61, 139-57 (2005) · Zbl 1477.68459 · doi:10.1023/B:VISI.0000043755.93987.aa
[10] Bruveris, M.; Vialard, F-X, On completeness of groups of diffeomorphisms, J. Eur. Math. Soc., 19, 1507-44 (2017) · Zbl 1370.58003 · doi:10.4171/JEMS/698
[11] Campbell, K. M.; Dai, H.; Su, Z.; Bauer, M.; Fletcher, P. T.; Joshi, S. C.; Feragen, A.; Sommer, S.; Schnabel, J.; Nielsen, M., Structural connectome atlas construction in the space of Riemannian metrics, Information Processing in Medical Imaging, vol 12729, 291-303 (2021), Cham: Springer, Cham · doi:10.1007/978-3-030-78191-0_23
[12] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-4 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[13] Christensen, G. E.; Rabbitt, R. D.; Miller, M. I., Deformable templates using large deformation kinematics, IEEE Trans. Image Process., 5, 1435-47 (1996) · doi:10.1109/83.536892
[14] Dupuis, P.; Grenander, U.; Miller, M., A variational formulation of a problem in image matching, Quart. Appl. Math., 56, 587-600 (1998) · Zbl 0949.49002 · doi:10.1090/qam/1632326
[15] Ebin, D. G.; Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92, 102-63 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[16] Freed, D. S.; Groisser, D., The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Michigan Math. J., 36, 323-44 (1989) · Zbl 0694.58008 · doi:10.1307/mmj/1029004004
[17] Grenander, U.; Miller, M., Pattern Theory: From Representation to Inference (2007), Oxford: Oxford University Press, Oxford · Zbl 1259.62089
[18] Gil-Medrano, O.; Michor, P. W., The Riemannian manifold of all Riemannian metrics, Q. J. Math., 42, 183-202 (1991) · Zbl 0739.58010 · doi:10.1093/qmath/42.1.183
[19] Grenander, U., General Pattern Theory (1993), Oxford: Clarendon, Oxford
[20] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7, 65-222 (1982) · Zbl 0499.58003 · doi:10.1090/S0273-0979-1982-15004-2
[21] Holm, D. D.; Marsden, J. E., Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, The Breadth of Symplectic and Poisson Geometry (Progress in Mathematics vol 232), pp 203-35 (2005), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 1062.53002
[22] Joshi, S. C.; Miller, M. I., Landmark matching via large deformation diffeomorphisms, IEEE Trans. Image Proc., 9, 1357-70 (2000) · Zbl 0965.37065 · doi:10.1109/83.855431
[23] Khesin, B.; Misiołek, G.; Modin, K., Geometry of the Madelung transform, Arch. Ration. Mech. Anal., 234, 549-73 (2019) · Zbl 1425.53107 · doi:10.1007/s00205-019-01397-2
[24] Khesin, B.; Misiołek, G.; Modin, K., Geometric hydrodynamics and infinite-dimensional Newton’s equations, Bull. Amer. Math. Soc., 58, 377-442 (2020) · Zbl 1473.35444 · doi:10.1090/bull/1728
[25] Lang, S., Fundamentals of Differential Geometry (1999), New York: Springer, New York · Zbl 0932.53001
[26] Marsden, J. E., Applications of Global Analysis in Mathematical Physics (1974), Boston, MA: Publish or Perish, Boston, MA · Zbl 0367.58001
[27] Marsland, S.; McLachlan, R. I.; Modin, K.; Perlmutter, M., Geodesic warps by conformal mappings, Int. J. Comput. Vis., 105, 144-54 (2013) · Zbl 1304.92077 · doi:10.1007/s11263-012-0584-x
[28] Modin, K.; Nachman, A.; Rondi, L., A multiscale theory for image registration and nonlinear inverse problems, Adv. Math., 346, 1009-66 (2019) · Zbl 1417.68268 · doi:10.1016/j.aim.2019.02.014
[29] Modin, K., Generalized Hunter-Saxton equations, optimal information transport and factorization of diffeomorphisms, J. Geom. Anal., 25, 1306-34 (2015) · Zbl 1330.58009 · doi:10.1007/s12220-014-9469-2
[30] Marsden, J. E.; Ratiu, T. S., Introduction to Mechanics and Symmetry (1999), New York: Springer, New York · Zbl 0933.70003
[31] Miller, M. I.; Trouvé, A.; Younes, L., On the metrics and Euler-Lagrange equations of computational anatomy, Ann. Rev. Biomed. Engin., 4, 375-405 (2002) · doi:10.1146/annurev.bioeng.4.092101.125733
[32] Mumford, D., Questions matheématiques en traitement du signal et de l’image, ch. Pattern Theory and Vision, pp 7-13 (1998), Paris: Institut Henri Poincaré, Paris
[33] Modin, K.; Viviani, M., Lie-Poisson methods for isospectral flows, Found. Comput. Math., 20, 889-921 (2020) · Zbl 1450.37073 · doi:10.1007/s10208-019-09428-w
[34] Palais, R. S., Foundations of Global non-Linear Analysis (1968), New York: Benjamin, New York · Zbl 0164.11102
[35] Smolentsev, N. K., Spaces of Riemannian metrics, J. Math. Sci., 142, 2436-519 (2007) · Zbl 1130.58006 · doi:10.1007/s10958-007-0185-3
[36] Thompson, D. W., On Growth and Form (1917), Cambridge: Cambridge University Press, Cambridge
[37] Trouvé, A1995An infinite dimensional group approach for physics based models in patterns recognitionTechnical Report(Ecole Normale Supérieure)
[38] Trouvé, A., Diffeomorphisms groups and pattern matching in image analysis, Int. J. Comp. Vis., 28, 213-21 (1998) · doi:10.1023/A:1008001603737
[39] Younes, L., Shapes and Diffeomorphisms (2010), New York: Springer, New York · Zbl 1205.68355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.