×

Lie-Poisson methods for isospectral flows. (English) Zbl 1450.37073

Lie-Poisson systems and isospectral flows are two well-known classes of dynamical systems. Lie-Poisson systems appear as Poisson reductions of Hamiltonian systems. The isospectral flows appear as Lax formulations of integrable systems.
In this paper, spectral preserving numerical methods of arbitrary order for isospectral flows are developed. They preserve in the case of Hamiltonian isospectral flows the Lie-Poisson structure. The methods are simply constructed and avoid the use of constraints or exponential maps as for other numerical methods for isospectral flows. The authors show through the framework of Poisson reduction, that the methods are directly related to classical symplectic Runge-Kutta methods and partitioned symplectic Runge-Kutta methods. Therefore they are named as Isospectral Symplectic Runge-Kutta (IsoSyRK) methods. The methods are applied to Hamiltonian systems such as the generalized rigid body, the (periodic) Toda lattice, the Euler equations on a sphere, point vortices on a sphere, the Heisenberg spin chain, and the Bloch-Iserles flow. They are also applied to non-Hamiltonian systems as for example the Toeplitz inverse eigenvalue problem, Chu’s flow on symmetric real matrices, and the Brockett flow. Through numerical examples, the efficiency and high-order accuracy of the methods is demonstrated. The MATLAB codes are available at https://bitbucket.org/Milo_Viviani/iso-runge-kutta.

MSC:

37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
53D20 Momentum maps; symplectic reduction

References:

[1] S. Bates and A. Weinstein, Lectures on the Geometry of Quantization, vol. 8, AMS, Berkeley, 1997. · Zbl 1049.53061
[2] A. M. Bloch and A. Iserles, On an isospectral Lie-Poisson system and its Lie algebra, Foundations of Computational Mathematics 6 (2006), 121-144. · Zbl 1105.37033
[3] Bogfjellmo, G.; Marthinsen, H., High-Order Symplectic Partitioned Lie Group Methods, Foundations of Computational Mathematics, 16, 493-530 (2016) · Zbl 1346.65069 · doi:10.1007/s10208-015-9257-9
[4] Brockett, RW, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Lin. Alg. Appl., 146, 79-91 (1991) · Zbl 0719.90045 · doi:10.1016/0024-3795(91)90021-N
[5] Chu, MT, A list of matrix flows with applications, Fields Institute Communications, 3, 87-97 (1994) · Zbl 0815.65094
[6] Chu, MT, Linear algebra algorithms as dynamical systems, Acta Numer., 17, 1-86 (2008) · Zbl 1165.65021 · doi:10.1017/S0962492906340019
[7] Deift, P.; Nanda, T.; Tomei, C., Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20, 1-22 (1983) · Zbl 0526.65032 · doi:10.1137/0720001
[8] H. Flaschka, The Toda lattice. II. Existence of integrals, Physical Review B 9 (1974), 1924. · Zbl 0942.37504
[9] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration (2006), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1094.65125
[10] M. Hénon, Integrals of the Toda lattice, vol. 9, 1974. · Zbl 0942.37503
[11] J. Hoppe, Ph.D. thesis MIT Cambridge, (1982).
[12] Hoppe, J.; Yau, S-T, Some properties of matrix harmonics on S2, Commun. Math. Phys., 195, 66-77 (1998) · Zbl 0984.43005 · doi:10.1007/s002200050379
[13] Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal., 33, 1, 368-387 (1996) · Zbl 0903.65066 · doi:10.1137/0733019
[14] A.W. Knapp, Lie groups beyond an introduction, Birkhäuser, 1996. · Zbl 0862.22006
[15] H.J. Landau, The inverse eigenvalue problem for real symmetric toeplitz matrices, Journal of the American Mathematical Society 7 (1994). · Zbl 0813.15006
[16] Manakov, SV, Note on the integration of the Euler’s equations of the dynamics of a n-dimensional rigid body, Functional Anal. Appl., 10, 328-329 (1976) · Zbl 0358.70004 · doi:10.1007/BF01076037
[17] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, vol. vol.17 of Texts in Applied Mathematics, Springer-Verlag, New York, 1999. · Zbl 0933.70003
[18] McLachlan, R.; Modin, K.; Verdier, O., Collective symplectic integrators, Nonlinearity, 27, 6, 1525-1542 (2014) · Zbl 1333.65139 · doi:10.1088/0951-7715/27/6/1525
[19] McLachlan, R.; Modin, K.; Verdier, O., Symplectic integrators for spin systems, Phys. Rev. E, 89, 061301 (2014) · doi:10.1103/PhysRevE.89.061301
[20] McLachlan, R.; Modin, K.; Verdier, O., A minimal-variable symplectic integrator on spheres, Math. Comp., 86, 307, 2325-2344 (2017) · Zbl 1364.37166 · doi:10.1090/mcom/3153
[21] McLachlan, R.; Modin, K.; Verdier, O.; Wilkins, M., Geometric Generalisations of SHAKE and RATTLE, Found. Comput. Math. (FoCM), 14, 2, 339-370 (2014) · Zbl 1347.37131 · doi:10.1007/s10208-013-9163-y
[22] McLachlan, R.; Quispel, GRW, Splitting methods, Acta Numerica, 11, 341-434 (2002) · Zbl 1105.65341 · doi:10.1017/S0962492902000053
[23] Modin, K., Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry, J. Geom. Mech., 9, 3, 335-390 (2017) · Zbl 1368.15010 · doi:10.3934/jgm.2017014
[24] K. Modin and M. Viviani, A casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics, arXiv:1812.11055 (2018). · Zbl 1460.76182
[25] Newton, PK, The N-Vortex Problem, Analytical Techniques (2001), Berlin, Heidelberg: Springer, Berlin, Heidelberg
[26] H. Poincaré, Sur une forme nouvelle des é quations de la mé canique, C.R. Acad. Sci. 132 (1901), 369-371. · JFM 32.0715.01
[27] Sanz-Serna, JM, Runge-kutta schemes for hamiltonian systems, BIT Numerical Mathematics, 28, 877-883 (1988) · Zbl 0655.70013 · doi:10.1007/BF01954907
[28] Symes, W., The QR algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D, 4, 275-280 (1982) · Zbl 1194.37112 · doi:10.1016/0167-2789(82)90069-0
[29] Toda, M., Waves in nonlinear lattice, Progress of Theoretical Physics Supplement, 45, 174-200 (1970) · doi:10.1143/PTPS.45.174
[30] Tomei, C., The Toda lattice, old and new, J. Geom. Mech., 5, 511-530 (2013) · Zbl 1319.37046 · doi:10.3934/jgm.2013.5.511
[31] Watkins, DS, Isospectral flows, SIAM Rev., 26, 379-391 (1984) · Zbl 0559.65018 · doi:10.1137/1026075
[32] M. Webb, Isospectral algorithms, Toeplitz matrices and orthogonal polynomials, Ph.D. thesis, (2017).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.