×

Scalarized black holes. (English) Zbl 1497.83020

Summary: Black holes represent outstanding astrophysical laboratories to test the strong gravity regime, since alternative theories of gravity may predict black hole solutions whose properties may differ distinctly from those of general relativity. When higher curvature terms are included in the gravitational action as, for instance, in the form of the Gauss-Bonnet term coupled to a scalar field, scalarized black holes result. Here we discuss several types of scalarized black holes and some of their properties.

MSC:

83C57 Black holes
85A15 Galactic and stellar structure
83C40 Gravitational energy and conservation laws; groups of motions
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Antoniou, G.; Bakopoulos, A.; Kanti, P., Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett., 120, 13, 131102 (2018) · doi:10.1103/PhysRevLett.120.131102
[2] Antoniou, G.; Bakopoulos, A.; Kanti, P., Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. D, 97, 8, 084037 (2018) · doi:10.1103/PhysRevD.97.084037
[3] Antoniou, G.; Bakopoulos, A.; Kanti, P., Black-hole solutions with scalar hair in Einstein-Scalar-Gauss-Bonnet theories, Phys. Rev. D, 97, 8, 084037 (2018) · doi:10.1103/PhysRevD.97.084037
[4] Ayzenberg, D.; Yunes, N., Slowly-rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity: quadratic order in spin solutions, Phys. Rev. D, 90, 044066 (2014) · doi:10.1103/PhysRevD.90.044066
[5] Ayzenberg, D.; Yagi, K.; Yunes, N., Linear stability analysis of dynamical quadratic gravity, Phys. Rev. D, 89, 4, 044023 (2014) · doi:10.1103/PhysRevD.89.044023
[6] Bakopoulos, A.; Antoniou, G.; Kanti, P., Novel black-hole solutions in Einstein-scalar-Gauss-Bonnet theories with a cosmological constant, Phys. Rev. D, 99, 6, 064003 (2019) · doi:10.1103/PhysRevD.99.064003
[7] Bakopoulos, A.; Kanti, P.; Pappas, N., Existence of solutions with a horizon in pure scalar-Gauss-Bonnet theories, Phys. Rev. D, 101, 4, 044026 (2020) · doi:10.1103/PhysRevD.101.044026
[8] Bakopoulos, A.; Kanti, P.; Pappas, N., Large and ultra-compact Gauss-Bonnet black holes with a self-interacting scalar field, Phys. Rev. D, 101, 8, 084059 (2020) · doi:10.1103/PhysRevD.101.084059
[9] Bardeen, JM; DeWitt, C.; DeWitt, BS, Timelike and null geodesics in the Kerr metric, Black Holes (Les Astres Occlus), 215 (1973), New York: Gordon and Breach, New York
[10] Berti, E.; Cardoso, V.; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quantum Gravity, 26, 163001 (2009) · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[11] Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, LC; Wex, N.; Yagi, K.; Baker, T., Testing general relativity with present and future astrophysical observations, Class. Quantum Gravity, 32, 243001 (2015) · doi:10.1088/0264-9381/32/24/243001
[12] Berti, E.; Collodel, LG; Kleihaus, B.; Kunz, J., Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett., 126, 1, 011104 (2021) · doi:10.1103/PhysRevLett.126.011104
[13] Blàzquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S.: Polar quasinormal modes of the scalarized Einstein-Gauss-Bonnet black holes. Phys. Rev. D 102 (10), 024086 (2020)
[14] Blázquez-Salcedo, JL; Macedo, CFB; Cardoso, V.; Ferrari, V.; Gualtieri, L.; Khoo, FS; Kunz, J.; Pani, P., Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission, Phys. Rev. D, 94, 10, 104024 (2016) · doi:10.1103/PhysRevD.94.104024
[15] Blázquez-Salcedo, JL; Khoo, FS; Kunz, J., Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes, Phys. Rev. D, 96, 6, 064008 (2017) · doi:10.1103/PhysRevD.96.064008
[16] Blázquez-Salcedo, JL; Doneva, DD; Kunz, J.; Yazadjiev, SS, Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes, Phys. Rev. D, 98, 8, 084011 (2018) · doi:10.1103/PhysRevD.98.084011
[17] Blázquez-Salcedo, JL; Doneva, DD; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, SS, Axial perturbations of the scalarized Einstein-Gauss-Bonnet black holes, Phys. Rev. D, 101, 10, 104006 (2020) · doi:10.1103/PhysRevD.101.104006
[18] Brihaye, Y.; Ducobu, L., Hairy black holes, boson stars and non-minimal coupling to curvature invariants, Phys. Lett. B, 795, 135 (2019) · Zbl 1421.83079 · doi:10.1016/j.physletb.2019.06.006
[19] Cardoso, V.; Gualtieri, L., Testing the black hole ‘no-hair’ hypothesis, Class. Quantum Gravity, 33, 17, 174001 (2016) · Zbl 1349.83003 · doi:10.1088/0264-9381/33/17/174001
[20] Charmousis, C.; Copeland, EJ; Padilla, A.; Saffin, PM, General second order scalar-tensor theory, self tuning, and the Fab Four, Phys. Rev. Lett., 108, 051101 (2012) · doi:10.1103/PhysRevLett.108.051101
[21] Chrusciel, PT; Lopes Costa, J.; Heusler, M., Stationary black holes: uniqueness and beyond, Living Rev. Relativ., 15, 7 (2012) · Zbl 1316.83023 · doi:10.12942/lrr-2012-7
[22] Collodel, LG; Kleihaus, B.; Kunz, J.; Berti, E., Spinning and excited black holes in Einstein-scalar-Gauss-Bonnet theory, Class. Quantum Gravity, 37, 7, 075018 (2020) · Zbl 1479.83125 · doi:10.1088/1361-6382/ab74f9
[23] Cunha, PVP; Herdeiro, CAR; Kleihaus, B.; Kunz, J.; Radu, E., Shadows of Einstein-dilaton-Gauss-Bonnet black holes, Phys. Lett. B, 768, 373 (2017) · Zbl 1370.83044 · doi:10.1016/j.physletb.2017.03.020
[24] Cunha, PVP; Herdeiro, CAR; Radu, E., Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett., 123, 1, 011101 (2019) · doi:10.1103/PhysRevLett.123.011101
[25] Damour, T.; Esposito-Farese, G., Nonperturbative strong field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett., 70, 2220-2223 (1993) · doi:10.1103/PhysRevLett.70.2220
[26] Dima, A.; Barausse, E.; Franchini, N.; Sotiriou, TP, Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett., 125, 23, 231101 (2020) · doi:10.1103/PhysRevLett.125.231101
[27] Doneva, DD; Yazadjiev, SS, New Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. Lett., 120, 13, 131103 (2018) · Zbl 1536.83099 · doi:10.1103/PhysRevLett.120.131103
[28] Doneva, DD; Yazadjiev, SS, Dynamics of the nonrotating and rotating black hole scalarization, Phys. Rev. D, 103, 6, 064024 (2021) · doi:10.1103/PhysRevD.103.064024
[29] Doneva, DD; Kiorpelidi, S.; Nedkova, PG; Papantonopoulos, E.; Yazadjiev, SS, Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. D, 98, 10, 104056 (2018) · doi:10.1103/PhysRevD.98.104056
[30] Doneva, DD; Staykov, KV; Yazadjiev, SS, Gauss-Bonnet black holes with a massive scalar field, Phys. Rev. D, 99, 10, 104045 (2019) · doi:10.1103/PhysRevD.99.104045
[31] Doneva, DD; Collodel, LG; Krüger, CJ; Yazadjiev, SS, Black hole scalarization induced by the spin: 2 + 1 time evolution, Phys. Rev. D, 102, 10, 104027 (2020) · doi:10.1103/PhysRevD.102.104027
[32] Doneva, DD; Collodel, LG; Krüger, CJ; Yazadjiev, SS, Spin-induced scalarization of Kerr black holes with a massive scalar field, Eur. Phys. J. C, 80, 12, 1205 (2020) · doi:10.1140/epjc/s10052-020-08765-3
[33] East, W.E.; Ripley, J.L.: Dynamics of spontaneous black hole scalarization and mergers inEinstein-scalar-Gauss-Bonnet gravity. Phys. Rev. Lett. (10), 127 101102 (2021)
[34] Faraoni, V.; Capozziello, S., Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (2011), Dordrecht: Springer, Dordrecht · Zbl 1206.85001 · doi:10.1007/978-94-007-0165-6
[35] Geroch, RP, Multipole moments. II. Curved space, J. Math. Phys., 11, 2580-2588 (1970) · Zbl 1107.83312 · doi:10.1063/1.1665427
[36] Gross, DJ; Sloan, JH, The quartic effective action for the heterotic string, Nucl. Phys. B, 291, 41 (1987) · doi:10.1016/0550-3213(87)90465-2
[37] Guo, ZK; Ohta, N.; Torii, T., Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. I. Asymptotically flat black holes, Prog. Theor. Phys., 120, 581 (2008) · Zbl 1163.83005 · doi:10.1143/PTP.120.581
[38] Hansen, RO, Multipole moments of stationary space-times, J. Math. Phys., 15, 46-52 (1974) · Zbl 1107.83304 · doi:10.1063/1.1666501
[39] Herdeiro, CAR; Radu, E.; Silva, HO; Sotiriou, TP; Yunes, N., Spin-induced scalarized black holes, Phys. Rev. Lett., 126, 1, 011103 (2021) · doi:10.1103/PhysRevLett.126.011103
[40] Hod, S., Spontaneous scalarization of Gauss-Bonnet black holes: analytic treatment in the linearized regime, Phys. Rev. D, 100, 6, 064039 (2019) · doi:10.1103/PhysRevD.100.064039
[41] Hod, S., Onset of spontaneous scalarization in spinning Gauss-Bonnet black holes, Phys. Rev. D, 102, 8, 084060 (2020) · doi:10.1103/PhysRevD.102.084060
[42] Horndeski, GW, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363 (1974) · doi:10.1007/BF01807638
[43] Kanti, P.; Mavromatos, NE; Rizos, J.; Tamvakis, K.; Winstanley, E., Dilatonic black holes in higher curvature string gravity, Phys. Rev. D, 54, 5049 (1996) · doi:10.1103/PhysRevD.54.5049
[44] Kleihaus, B.; Kunz, J.; Radu, E., Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. Lett., 106, 151104 (2011) · doi:10.1103/PhysRevLett.106.151104
[45] Kleihaus, B.; Kunz, J.; Mojica, S., Quadrupole moments of rapidly rotating compact objects in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. D, 90, 6, 061501 (2014) · doi:10.1103/PhysRevD.90.061501
[46] Kleihaus, B.; Kunz, J.; Mojica, S.; Radu, E., Spinning black holes in Einstein-Gauss-Bonnet-dilaton theory: nonperturbative solutions, Phys. Rev. D, 93, 4, 044047 (2016) · doi:10.1103/PhysRevD.93.044047
[47] Kobayashi, T.; Yamaguchi, M.; Yokoyama, J., Generalized G-inflation: inflation with the most general second-order field equations, Prog. Theor. Phys., 126, 511 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[48] Kokkotas, KD; Schmidt, BG, Quasinormal modes of stars and black holes, Living Rev. Rel., 2, 2 (1999) · Zbl 0984.83002 · doi:10.12942/lrr-1999-2
[49] Konoplya, RA; Zhidenko, A., Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys., 83, 793-836 (2011) · doi:10.1103/RevModPhys.83.793
[50] Konoplya, R.; Zinhailo, A.; Stuchlík, Z., Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole, Phys. Rev. D, 99, 12, 124042 (2019) · doi:10.1103/PhysRevD.99.124042
[51] Kuan, H.J.; Doneva, D.D.; Yazadjiev, S.S.: Dynamical formation of scalarized black holes and neutron stars through stellar core collapse. Phys. Rev. Lett. (16), 127 161103 (2012)
[52] Macedo, CFB; Sakstein, J.; Berti, E.; Gualtieri, L.; Silva, HO; Sotiriou, TP, Self-interactions and spontaneous black hole scalarization, Phys. Rev. D, 99, 10, 104041 (2019) · doi:10.1103/PhysRevD.99.104041
[53] Maselli, A.; Pani, P.; Gualtieri, L.; Ferrari, V., Rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity with finite coupling, Phys. Rev. D, 92, 8, 083014 (2015) · doi:10.1103/PhysRevD.92.083014
[54] Metsaev, RR; Tseytlin, AA, Order alpha-prime (two loop) equivalence of the string equations of motion and the sigma model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys. B, 293, 385 (1987) · doi:10.1016/0550-3213(87)90077-0
[55] Minamitsuji, M.; Ikeda, T., Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity, Phys. Rev. D, 99, 4, 044017 (2019) · doi:10.1103/PhysRevD.99.044017
[56] Myung, YS; Zou, D., Quasinormal modes of scalarized black holes in the Einstein-Maxwell-Scalar theory, Phys. Lett. B, 790, 400-407 (2019) · Zbl 1411.83054 · doi:10.1016/j.physletb.2019.01.046
[57] Myung, YS; Zou, DC, Black holes in Gauss-Bonnet and Chern-Simons-scalar theory, Int. J. Mod. Phys. D, 28, 9, 1950114 (2019) · Zbl 1432.83043 · doi:10.1142/S0218271819501141
[58] Nollert, HP, Topical review: quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quantum Gravity, 16, R159-R216 (1999) · Zbl 0948.83032 · doi:10.1088/0264-9381/16/12/201
[59] Pani, P.; Cardoso, V., Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D, 79, 084031 (2009) · doi:10.1103/PhysRevD.79.084031
[60] Pani, P.; Macedo, CFB; Crispino, LCB; Cardoso, V., Slowly rotating black holes in alternative theories of gravity, Phys. Rev. D, 84, 087501 (2011) · doi:10.1103/PhysRevD.84.087501
[61] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14, 57-59 (1965) · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[62] Rezzolla, L., Gravitational waves from perturbed black holes and relativistic stars, ICTP Lect. Notes Ser., 14, 255-316 (2003) · Zbl 1062.83532
[63] Sakstein, J.; Jain, B., Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories, Phys. Rev. Lett., 119, 25, 251303 (2017) · doi:10.1103/PhysRevLett.119.251303
[64] Saridakis, E.N.; et al.: Modified gravity and cosmology: an update by the CANTATA network. CANTATA. arXiv:2105.12582 [gr-qc] · Zbl 1478.83001
[65] Silva, H.O.; Witek, H.; Elley, M.; Yunes, N.: Dynamical scalarization and descalarization in binary black hole mergers. Phys. Rev. Lett. (3), 127 031101 (2021)
[66] Silva, HO; Sakstein, J.; Gualtieri, L.; Sotiriou, TP; Berti, E., Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett., 120, 13, 131104 (2018) · doi:10.1103/PhysRevLett.120.131104
[67] Silva, HO; Macedo, CFB; Sotiriou, TP; Gualtieri, L.; Sakstein, J.; Berti, E., Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity, Phys. Rev. D, 99, 6, 064011 (2019) · doi:10.1103/PhysRevD.99.064011
[68] Sotiriou, TP; Zhou, SY, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett., 112, 251102 (2014) · doi:10.1103/PhysRevLett.112.251102
[69] Sotiriou, TP; Zhou, SY, Black hole hair in generalized scalar-tensor gravity: an explicit example, Phys. Rev. D, 90, 124063 (2014) · doi:10.1103/PhysRevD.90.124063
[70] Thorne, KS, Multipole expansions of gravitational radiation, Rev. Mod. Phys., 52, 299-339 (1980) · doi:10.1103/RevModPhys.52.299
[71] Torii, T.; Yajima, H.; Maeda, KI, Dilatonic black holes with Gauss-Bonnet term, Phys. Rev. D, 55, 739 (1997) · doi:10.1103/PhysRevD.55.739
[72] Wald, RM, Black hole entropy is the Noether charge, Phys. Rev. D, 48, 8, R3427-R3431 (1993) · Zbl 0942.83512 · doi:10.1103/PhysRevD.48.R3427
[73] Will, CM, The Confrontation between general relativity and experiment, Living Rev. Relativ., 9, 3 (2006) · Zbl 1316.83020 · doi:10.12942/lrr-2006-3
[74] Witek, H.; Gualtieri, L.; Pani, P.; Sotiriou, TP, Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics, Phys. Rev. D, 99, 6, 064035 (2019) · doi:10.1103/PhysRevD.99.064035
[75] Witek, H.; Gualtieri, L.; Pani, P., Towards numerical relativity in scalar Gauss-Bonnet gravity: \(3+1\) decomposition beyond the small-coupling limit, Phys. Rev. D, 101, 12, 124055 (2020) · doi:10.1103/PhysRevD.101.124055
[76] Zhang, H.; Zhou, M.; Bambi, C.; Kleihaus, B.; Kunz, J.; Radu, E., Testing Einstein-dilaton-Gauss-Bonnet gravity with the reflection spectrum of accreting black holes, Phys. Rev. D, 95, 10, 104043 (2017) · doi:10.1103/PhysRevD.95.104043
[77] Zhang, SJ; Wang, B.; Wang, A.; Saavedra, JF, Object picture of scalar field perturbation on Kerr black hole in scalar-Einstein-Gauss-Bonnet theory, Phys. Rev. D, 102, 12, 124056 (2020) · doi:10.1103/PhysRevD.102.124056
[78] Zinhailo, A., Quasinormal modes of Dirac field in the Einstein-Dilaton-Gauss-Bonnet and Einstein-Weyl gravities, Eur. Phys. J. C, 79, 11, 912 (2019) · doi:10.1140/epjc/s10052-019-7425-9
[79] Zwiebach, B., Curvature squared terms and string theories, Phys. Lett., 156B, 315 (1985) · doi:10.1016/0370-2693(85)91616-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.