×

Black holes in Gauss-Bonnet and Chern-Simons-scalar theory. (English) Zbl 1432.83043

Summary: We carry out the stability analysis of the Schwarzschild black hole in Gauss-Bonnet and Chern-Simons-scalar theory. Here, we introduce two quadratic scalar couplings \((\phi_1^2\), \(\phi_2^2)\) to Gauss-Bonnet and Chern-Simons terms, where the former term is parity-even, while the latter one is parity-odd. The perturbation equation for the scalar \(\phi_1\) is the Klein-Gordon equation with an effective mass, while the perturbation equation for \(\phi_2\) is coupled to the parity-odd metric perturbation, providing a system of two coupled equations. It turns out that the Schwarzschild black hole is unstable against \(\phi_1\) perturbation, leading to scalarized black holes, while the black hole is stable against \(\phi_2\) and metric perturbations, implying no scalarized black holes.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes

References:

[1] Antoniou, G., Bakopoulos, A. and Kanti, P., Phys. Rev. Lett.120 (2018) 131102, https://doi.org/10.1103/PhysRevLett.120.131102, arXiv:1711.03390 [hep-th].
[2] Doneva, D. D. and Yazadjiev, S. S., Phys. Rev. Lett.120 (2018) 131103, https://doi.org/10.1103/PhysRevLett.120.131103, arXiv:1711.01187 [gr-qc].
[3] Silva, H. O., Sakstein, J., Gualtieri, L., Sotiriou, T. P. and Berti, E., Phys. Rev. Lett.120 (2018) 131104, https://doi.org/10.1103/PhysRevLett.120.131104, arXiv:1711.02080 [gr-qc].
[4] Stefanov, I. Z., Yazadjiev, S. S. and Todorov, M. D., Mod. Phys. Lett. A23 (2008) 2915, https://doi.org/10.1142/S0217732308028351, arXiv:0708.4141 [gr-qc].
[5] Doneva, D. D., Yazadjiev, S. S., Kokkotas, K. D. and Stefanov, I. Z., Phys. Rev. D82 (2010) 064030, https://doi.org/10.1103/PhysRevD.82.064030, arXiv:1007.1767 [gr-qc].
[6] Herdeiro, C. A. R., Radu, E., Sanchis-Gual, N. and Font, J. A., Phys. Rev. Lett.121 (2018) 101102, https://doi.org/10.1103/PhysRevLett.121.101102, arXiv:1806.05190 [gr-qc].
[7] Myung, Y. S. and Zou, D. C., Phys. Rev. D98 (2018) 024030, https://doi.org/10.1103/PhysRevD.98.024030, arXiv:1805.05023 [gr-qc].
[8] Y. S. Myung and D. C. Zou, arXiv:1808.02609 [gr-qc].
[9] Delsate, T., Herdeiro, C. and Radu, E., Phys. Lett. B787 (2018) 8, https://doi.org/10.1016/j.physletb.2018.09.060, arXiv:1806.06700 [gr-qc].
[10] Brihaye, Y., Herdeiro, C. and Radu, E., Phys. Lett. B788 (2019) 295, https://doi.org/10.1016/j.physletb.2018.11.022, arXiv:1810.09560 [gr-qc].
[11] Ayzenberg, D., Yagi, K. and Yunes, N., Phys. Rev. D89 (2014) 044023, https://doi.org/10.1103/PhysRevD.89.044023, arXiv:1310.6392 [gr-qc].
[12] Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., Phys. Rev. D81 (2010) 124021, https://doi.org/10.1103/PhysRevD.81.124021, arXiv:1004.4007 [gr-qc].
[13] Moon, T. and Myung, Y. S., Phys. Rev. D84 (2011) 104029, https://doi.org/10.1103/PhysRevD.84.104029, arXiv:1109.2719 [gr-qc].
[14] Kimura, M., Phys. Rev. D98 (2018) 024048, https://doi.org/10.1103/PhysRevD.98.024048, arXiv:1807.05029 [gr-qc].
[15] Macedo, C. F. B., Phys. Rev. D98 (2018) 084054, https://doi.org/10.1103/PhysRevD.98.084054, arXiv:1809.08691 [gr-qc].
[16] Satoh, M. and Soda, J., J. Cosmol. Astropart. Phys.0809 (2008) 019, https://doi.org/10.1088/1475-7516/2008/09/019, arXiv:0806.4594 [astro-ph].
[17] Satoh, M., J. Cosmol. Astropart. Phys.1011 (2010) 024, https://doi.org/10.1088/1475-7516/2010/11/024, arXiv:1008.2724 [astro-ph.CO].
[18] Antoniadis, I., Rizos, J. and Tamvakis, K., Nucl. Phys. B415 (1994) 497, https://doi.org/10.1016/0550-3213(94)90120-1, arXiv:hep-th/9305025.
[19] P. A. Cano and A. Ruiprez, arXiv:1901.01315 [gr-qc].
[20] Zerilli, F. J., Phys. Rev. Lett.24 (1970) 737, https://doi.org/10.1103/PhysRevLett.24.737.
[21] Regge, T. and Wheeler, J. A., Phys. Rev.108 (1957) 1063, https://doi.org/10.1103/PhysRev.108.1063. · Zbl 0079.41902
[22] Minamitsuji, M. and Ikeda, T., Phys. Rev. D99 (2019) 044017, https://doi.org/10.1103/PhysRevD.99.044017, arXiv:1812.03551 [gr-qc].
[23] G. Garcia and M. Salgado, arXiv:1812.05809 [gr-qc].
[24] Blzquez-Salcedo, J. L., Doneva, D. D., Kunz, J. and Yazadjiev, S. S., Phys. Rev. D98 (2018) 084011, https://doi.org/10.1103/PhysRevD.98.084011, arXiv:1805.05755 [gr-qc].
[25] Silva, H. O., Macedo, C. F. B., Sotiriou, T. P., Gualtieri, L., Sakstein, J. and Berti, E., Phys. Rev. D99 (2019) 064011, https://doi.org/10.1103/PhysRevD.99.064011, arXiv:1812.05590 [gr-qc].
[26] Herdeiro, C. A. R. and Radu, E., Phys. Rev. Lett.112 (2014) 221101, https://doi.org/10.1103/PhysRevLett.112.221101, arXiv:1403.2757 [gr-qc].
[27] Gao, Y. X., Huang, Y. and Liu, D. J., Phys. Rev. D99 (2019) 044020, https://doi.org/10.1103/PhysRevD.99.044020, arXiv:1808.01433 [gr-qc].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.