×

Quasinormal modes of scalarized black holes in the Einstein-Maxwell-scalar theory. (English) Zbl 1411.83054

Summary: We perform the stability analysis on scalarized charged black holes in the Einstein-Maxwell-Scalar (EMS) theory by computing quasinormal mode spectrum. It is noted that the appearance of these black holes with scalar hair is closely related to the instability of Reissner-Nordström black holes without scalar hair in the EMS theory. The scalarized charged black hole solutions are classified by the order number of \(n = 0, 1, 2, \dots\), where \(n = 0\) is called the fundamental branch and \(n = 1, 2, \dots\) denote the \(n\) excited branches. Here, we show that the \(n = 1, 2\) excited black holes are unstable against the \(s(l = 0)\)-mode scalar perturbation, while the \(n = 0\) black hole is stable against all scalar-vector-tensor perturbations. This is consistent with other scalarized black holes without charge found in the Einstein-Scalar-Gauss-Bonnet theory.

MSC:

83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Herdeiro, C. A.R.; Radu, E.; Sanchis-Gual, N.; Font, J. A., Phys. Rev. Lett., 121, 10, Article 101102 pp. (2018)
[2] Zerilli, F. J., Phys. Rev. D, 9, 860 (1974)
[3] Moncrief, V., Phys. Rev. D, 9, 2707 (1974)
[4] Moncrief, V., Phys. Rev. D, 10, 1057 (1974)
[5] Moncrief, V., Phys. Rev. D, 12, 1526 (1975)
[6] Myung, Y. S.; Zou, D. C.
[7] Silva, H. O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T. P.; Berti, E., Phys. Rev. Lett., 120, 13, Article 131104 pp. (2018)
[8] Antoniou, G.; Bakopoulos, A.; Kanti, P., Phys. Rev. Lett., 120, 13, Article 131102 pp. (2018)
[9] Doneva, D. D.; Yazadjiev, S. S., Phys. Rev. Lett., 120, 13, Article 131103 pp. (2018)
[10] Gregory, R.; Laflamme, R., Phys. Rev. Lett., 70, 2837 (1993) · Zbl 1051.83544
[11] Myung, Y. S.; Zou, D. C., Phys. Rev. D, 98, 2, Article 024030 pp. (2018)
[12] Whitt, B., Phys. Rev. D, 32, 379 (1985)
[13] Myung, Y. S., Phys. Rev. D, 88, 2, Article 024039 pp. (2013)
[14] Lü, H.; Perkins, A.; Pope, C. N.; Stelle, K. S., Phys. Rev. D, 96, 4, Article 046006 pp. (2017)
[15] Stelle, K. S., Int. J. Mod. Phys. A, 32, 09, Article 1741012 pp. (2017) · Zbl 1360.83001
[16] Doneva, D. D.; Yazadjiev, S. S.; Kokkotas, K. D.; Stefanov, I. Z., Phys. Rev. D, 82, Article 064030 pp. (2010)
[17] Blázquez-Salcedo, J. L.; Doneva, D. D.; Kunz, J.; Yazadjiev, S. S., Phys. Rev. D, 98, 8, Article 084011 pp. (2018)
[18] Garfinkle, D.; Horowitz, G. T.; Strominger, A., Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 45, 3888 (1992), Erratum:
[19] Pacilio, C.; Brito, R., Phys. Rev. D, 98, 10, Article 104042 pp. (2018)
[20] Chandrasekhar, S., Proc. R. Soc. Lond. A, 365, 453 (1979)
[21] Blázquez-Salcedo, J. L.; Macedo, C. F.B.; Cardoso, V.; Ferrari, V.; Gualtieri, L.; Khoo, F. S.; Kunz, J.; Pani, P., Phys. Rev. D, 94, 10, Article 104024 pp. (2016)
[22] Dotti, G.; Gleiser, R. J., Class. Quantum Gravity, 22, L1 (2005) · Zbl 1060.83035
[23] Leaver, E. W., Phys. Rev. D, 41, 2986 (1990)
[24] Berti, E.; Kokkotas, K. D., Phys. Rev. D, 71, Article 124008 pp. (2005)
[25] Cho, H. T.; Cornell, A. S.; Doukas, J.; Huang, T. R.; Naylor, W., Adv. Math. Phys., 2012, Article 281705 pp. (2012) · Zbl 1251.83030
[26] Matyjasek, J.; Opala, M., Phys. Rev. D, 96, 2, Article 024011 pp. (2017)
[27] Cardoso, V.; Macedo, C. F.B.; Pani, P.; Ferrari, V., J. Cosmol. Astropart. Phys., 1605, 05, Article 054 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.