×

The (cyclic) enhanced nilpotent cone via quiver representations. (English) Zbl 1477.16021

The main result of the paper under review is a new parametrization of orbits in the cyclic enhanced nilpotent cone \(\mathcal N_\infty(\ell,n)\), where \(\ell\) and \(n\) denote natural numbers. The authors use this description to their study of admissible \(\mathcal D\)-modules in [G. Bellamy and M. Boos, Kyoto J. Math. 61, No. 1, 115–170 (2021; Zbl 1481.14036)].
We first recall the definition of \(\mathcal N_\infty(\ell,n)\). Let \(\mathcal Q_\infty(\ell)\), the cyclic quiver with \(\ell\)-vertices together with the framing \(\infty \to 0\) at the vertex \(0\). The cyclic enhanced nilpotent cone \(\mathcal N_\infty(\ell,n)\) is defined as the space of quiver representations of \(\mathcal Q_\infty(\ell)\) with dimension one at the framing vertex and such that the endomorphism at vertex \(0\) obtained by going once around the cycle has nilpotency \(\leq n\).
For example, note that if we fix \(\ell=1\) and consider only representation with dimension vector \((1,n)\), then we recover the enhanced nilpotent cone \(V \times \mathcal N\), where \(\mathcal N\) denotes the space of nilpotent \(n\times n\)-matrices.
Returning to the general setting, let \(G = \prod_{i =0}^{\ell-1} \mathrm{GL}_i\). Then \(G\) naturally acts on \(\mathcal N_\infty(\ell,n)\) and the action has finitely many orbits. In the case \(\ell=1\), the \(G\)-orbits were parametrized by P. N. Achar and A. Henderson [Adv. Math. 219, No. 1, 27–62 (2008; Zbl 1205.14061)] and R. Travkin [Sel. Math., New Ser. 14, No. 3–4, 727–758 (2009; Zbl 1230.20047)] independently and for general \(\ell\) by C.P. Johnson in his thesis [Enhanced nilpotent representations of a cyclic quiver. Salt Lake City: University of Utah (PhD Thesis) (2010)].
The authors give a different parametrization. Namely they show that the \(G\)-orbits in \(\mathcal N_\infty(\ell,n)\) are in natural bijection with the set: \[ \mathcal Q(n,\ell) := \{ (\lambda;\nu) \in \mathcal P \times \mathcal P_\ell \mid \mathrm{res}_\ell(\lambda) + \mathrm{sres}_\ell(\nu) = n\delta \}, \] where \(\mathcal P\) (resp. \(\mathcal P_\ell\)) denotes the set of partitions (resp. \(\ell\)-multipartions), \(\mathrm{res}(\lambda)\) and \(\mathrm{sres}(\nu)\) are the (shifted) \(\ell\)-residues of the corresponding partitions and \(\delta\) is the minimal imaginary root for the cyclic quiver. While this algebra does not have finite representation type in general, by restricting to the representations to have dimension one at the framing vertex, the authors are able to overcome this complication.
The authors also give an explicit translation between the different parametrizations.

MSC:

16G20 Representations of quivers and partially ordered sets
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
17B08 Coadjoint orbits; nilpotent varieties

References:

[1] Achar, Pn; Henderson, A., Orbit closures in the enhanced nilpotent cone, Adv. Math., 219, 1, 27-62 (2008) · Zbl 1205.14061 · doi:10.1016/j.aim.2008.04.008
[2] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 1, Volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2006). (Techniques of representation theory) · Zbl 1092.16001
[3] Bellamy, G., Boos, M.: Semi-simplicity of the category of admissible D-modules. Preprint, arXiv:1709.08986 (2017) · Zbl 1481.14036
[4] Bernstein, J.N.: \(P\)-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case). In: Lie Group Representations, II (College Park, Md., 1982/1983), Volume 1041 of Lecture Notes in Mathematics, pp. 50-102. Springer, Berlin (1984) · Zbl 0541.22009
[5] Bongartz, K., Algebras and quadratic forms, J. Lond. Math. Soc. (2), 28, 3, 461-469 (1983) · Zbl 0532.16020 · doi:10.1112/jlms/s2-28.3.461
[6] Bongartz, K., Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv., 69, 4, 575-611 (1994) · Zbl 0832.16008 · doi:10.1007/BF02564505
[7] Bongartz, K., On degenerations and extensions of finite-dimensional modules, Adv. Math., 121, 2, 245-287 (1996) · Zbl 0862.16007 · doi:10.1006/aima.1996.0053
[8] Boos, M., Finite parabolic conjugation on varieties of nilpotent matrices, Algebr. Represent. Theory, 17, 6, 1657-1682 (2014) · Zbl 1327.14258 · doi:10.1007/s10468-014-9464-0
[9] Brüstle, T.; De La Peña, Ja; Skowroński, A., Tame algebras and Tits quadratic forms, Adv. Math., 226, 1, 887-951 (2011) · Zbl 1252.16013 · doi:10.1016/j.aim.2010.07.007
[10] de la Peña, J.A., Skowroński, A.: The Tits forms of tame algebras and their roots. In: Representations of Algebras and Related Topics, EMS Series of Congress Reports, pp. 445-499. European Mathematical Society, Zürich (2011) · Zbl 1301.16018
[11] Drozd, Ju. A., Tame and wild matrix problems, Representation Theory II, 242-258 (1980), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0457.16018
[12] Ginzburg, V., Dobrovolska, G., Travkin, R.: Moduli spaces, indecomposable objects and potentials over a finite field. Preprint, arXiv:1612.01733v1 (2016)
[13] Gabriel, P., The universal cover of a representation-finite algebra, Lecture Notes in Mathematics, 68-105 (1981), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0481.16008
[14] Johnson, C.P.: Enhanced Nilpotent Representations of a Cyclic Quiver. ProQuest LLC, Ann Arbor (2010). Thesis (Ph.D.)-The University of Utah
[15] Kempken, G.: Darstellung, Eine, des Köchers \({\tilde{\text{A}}}_k \). Bonner Mathematische Schriften [Bonn Mathematical Publications], 137. Universität Bonn, Mathematisches Institut, Bonn, 1982. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn (1982) · Zbl 0498.14021
[16] Mautner, C., Affine pavings and the enhanced nilpotent cone, Proc. Am. Math. Soc., 145, 4, 1393-1398 (2017) · Zbl 1418.17019
[17] Nörenberg, R.; Skowroński, A., Tame minimal non-polynomial growth simply connected algebras, Colloquium Math., 73, 2, 301-330 (1997) · Zbl 0889.16005 · doi:10.4064/cm-73-2-301-330
[18] Serre, J.-P.: Espaces fibrés algébriques (d’après André Weil). In: Séminaire Bourbaki, Vol. 2, pp. Exp. No. 82, 305-311. Société Mathématique de France, Paris (1995)
[19] Skowroński, A.: Simply connected algebras and Hochschild cohomologies [ MR1206961 (94e:16016)]. In: Representations of Algebras (Ottawa, ON, 1992), Volume 14 of CMS Conference on Proceedings, pp. 431-447. American Mathematical Society, Providence, RI (1993) · Zbl 0806.16012
[20] Skowroński, A., Tame algebras with strongly simply connected galois coverings, Colloquium Math., 72, 2, 335-351 (1997) · Zbl 0876.16007 · doi:10.4064/cm-72-2-335-351
[21] Sun, M., Point stabilisers for the enhanced and exotic nilpotent cones, J. Group Theory, 14, 6, 825-839 (2011) · Zbl 1279.20059 · doi:10.1515/JGT.2010.080
[22] Travkin, R., Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Math. (N.S.), 14, 3-4, 727-758 (2009) · Zbl 1230.20047 · doi:10.1007/s00029-009-0508-y
[23] Unger, L., The concealed algebras of the minimal wild, hereditary algebras, Bayreuth. Math. Schr., 31, 145-154 (1990) · Zbl 0739.16012
[24] Vinberg, Èb, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., 40, 3, 488-526 (1976) · Zbl 0363.20035
[25] Zwara, G., Degenerations for modules over representation-finite algebras, Proc. Am. Math. Soc., 127, 5, 1313-1322 (1999) · Zbl 0927.16008 · doi:10.1090/S0002-9939-99-04714-0
[26] Zwara, G., Degenerations of finite-dimensional modules are given by extensions, Compos. Math., 121, 2, 205-218 (2000) · Zbl 0957.16007 · doi:10.1023/A:1001778532124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.