×

Synchronization and chimeras in a network of four ring-coupled thermoacoustic oscillators. (English) Zbl 07488223

Summary: We take a complex systems approach to investigating experimentally the collective dynamics of a network of four self-excited thermoacoustic oscillators coupled in a ring. Using synchronization metrics, we find a wide variety of emergent multi-scale behaviour, such as (i) a transition from intermittent frequency locking on a \(\mathbb{T}^3\) quasiperiodic attractor to a breathing chimera, (ii) a two-cluster state of anti-phase synchronization on a periodic limit cycle, and (iii) a weak anti-phase chimera. We then compute the cross-transitivity from recurrence networks to identify the dominant direction of the coupling between the heat-release-rate (\(q^\prime_{\mathbb{X}}\)) and pressure (\(p^\prime_{\mathbb{X}}\)) fluctuations in each individual oscillator, as well as that between the pressure (\(p^{\prime}_{\mathbb{X}}\) and \(p^\prime_{\mathbb{Y}}\)) fluctuations in each pair of coupled oscillators. We find that networks of non-identical oscillators exhibit circumferentially biased \(p^\prime_{\mathbb{X}}\)-\(p^\prime_{\mathbb{Y}}\) coupling, leading to mode localization, whereas networks of identical oscillators exhibit globally symmetric \(p^\prime_{\mathbb{X}}\)-\(p^\prime_{\mathbb{Y}}\) coupling. In both types of networks, we find that the \(p^\prime_{\mathbb{X}}\)-\(q^\prime_{\mathbb{X}}\) coupling can be symmetric or asymmetric, but that the asymmetry is always such that \(q^\prime_{\mathbb{X}}\) exerts a greater influence on \(p^\prime_{\mathbb{X}}\) than vice versa. Finally, we show through a cluster analysis that the \(p^\prime_{\mathbb{X}}\)-\(p^\prime_{\mathbb{Y}}\) interactions play a more critical role than the \(p^\prime_{\mathbb{X}}\)-\(q^\prime_{\mathbb{X}}\) interactions in defining the collective dynamics of the system. As well as providing new insight into the interplay between the \(p^\prime_{\mathbb{X}}\)-\(p^\prime_{\mathbb{Y}}\) and \(p^\prime_{\mathbb{X}}\)-\(q^\prime_{\mathbb{X}}\) coupling, this study shows that even a small network of four ring-coupled thermoacoustic oscillators can exhibit a wide variety of collective dynamics. In particular, we present the first evidence of chimera states in a minimal network of coupled thermoacoustic oscillators, paving the way for the application of oscillation quenching strategies based on chimera control.

MSC:

76-XX Fluid mechanics

References:

[1] Abrams, D., Mirollo, R., Strogatz, S. & Wiley, D.2008Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett.101 (8), 084103.
[2] Abrams, D. & Strogatz, S.2004Chimera states for coupled oscillators. Phys. Rev. Lett.93 (17), 174102.
[3] Akaike, H.1998 Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike (ed. E. Parzen, K. Tanabe & G. Kitagawa), pp. 199-213. Springer.
[4] Ashwin, P. & Burylko, O.2015Weak chimeras in minimal networks of coupled phase oscillators. Chaos25 (1), 013106. · Zbl 1345.34052
[5] Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O.2008Synchronization: From Simple to Complex. Springer Science & Business Media. · Zbl 1163.34001
[6] Balusamy, S., Li, L.K.B., Han, Z., Juniper, M.P. & Hochgreb, S.2015Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst.35 (3), 3229-3236.
[7] Barrat, A. & Weigt, M.2000On the properties of small-world network models. Eur. Phys. J. B13 (3), 547-560.
[8] Berkooz, G., Holmes, P. & Lumley, J.1993The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech.25 (1), 539-575.
[9] Bethke, S., Krebs, W., Flohr, P. & Prade, B.2002 Thermoacoustic properties of can annular combustors. In 8th AIAA/CEAS Aeroacoustics Conference and Exhibit. AIAA Paper 2002-2570.
[10] Bick, C. & Martens, E.A.2015Controlling chimeras. New J. Phys.17 (3), 033030. · Zbl 1452.34069
[11] Bick, C., Sebek, M. & Kiss, I.2017Robust weak chimeras in oscillator networks with delayed linear and quadratic interactions. Phys. Rev. Lett.119 (16), 168301.
[12] Biwa, T., Tozuka, S. & Yazaki, T.2015Amplitude death in coupled thermoacoustic oscillators. Phys. Rev. Appl.3 (3), 034006.
[13] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.2006Complex networks: structure and dynamics. Phys. Rep.424 (4-5), 175-308. · Zbl 1371.82002
[14] Bonciolini, G. & Noiray, N.2019Synchronization of thermoacoustic modes in sequential combustors. Trans. ASME J. Engng Gas Turbines Power141 (3), 031010. · Zbl 1437.37063
[15] Borkowski, L., Perlikowski, P., Kapitaniak, T. & Stefanski, A.2015Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators. Phys. Rev. E91 (6), 062906.
[16] Brunton, S. & Kutz, J.2019Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press. · Zbl 1407.68002
[17] Brunton, S., Noack, B. & Koumoutsakos, P.2020Machine learning for fluid mechanics. Annu. Rev. Fluid Mech.52, 477-508. · Zbl 1439.76138
[18] Buschmann, P., Mensah, G. & Moeck, J.2020Intrinsic thermoacoustic modes in an annular combustion chamber. Combust. Flame214, 251-262.
[19] Călugăru, D., Totz, J., Martens, E. & Engel, H.2020First-order synchronization transition in a large population of strongly coupled relaxation oscillators. Sci. Adv.6 (39), 2637.
[20] Candel, S.2002Combustion dynamics and control: progress and challenges. Proc. Combust. Inst.29 (1), 1-28.
[21] Christodoulou, L., Kabiraj, L., Saurabh, A. & Karimi, N.2016Characterizing the signature of flame flashback precursor through recurrence analysis. Chaos26 (1), 013110.
[22] Culick, F.E.C.2006 Unsteady motions in combustion chambers for propulsion systems. NATO, AGARDograph AG-AVT-039.
[23] Dange, S., Manoj, K., Banerjee, S., Pawar, S., Mondal, S. & Sujith, R.I.2019Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems. Chaos29 (9), 093135.
[24] De, S., Bhattacharya, A., Mondal, S., Mukhopadhyay, A. & Sen, S.2020Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor. Chaos30 (4), 043115.
[25] Donges, J., Zou, Y., Marwan, N. & Kurths, J.2009The backbone of the climate network. Europhys. Lett.87 (4), 48007.
[26] Donner, R., Small, M., Donges, J., Marwan, N., Zou, Y., Xiang, R. & Kurths, J.2011Recurrence-based time series analysis by means of complex network methods. Intl J. Bifurcation Chaos21 (4), 1019-1046. · Zbl 1247.37086
[27] Dowling, A.P. & Morgans, A.S.2005Feedback control of combustion oscillations. Annu. Rev. Fluid Mech.37, 151-182. · Zbl 1117.76072
[28] Eckmann, J., Kamphorst, S. & Ruelle, D.1987Recurrence plots of dynamical systems. Europhys. Lett.4 (9), 973-977.
[29] Emmert, T., Bomberg, S. & Polifke, W.2015Intrinsic thermoacoustic instability of premixed flames. Combust. Flame162 (1), 75-85.
[30] Endres, D. & Schindelin, J.2003A new metric for probability distributions. IEEE Trans. Inf. Theory49 (7), 1858-1860. · Zbl 1294.62003
[31] Farisco, F., Panek, L. & Kok, J.2017Thermo-acoustic cross-talk between cans in a can-annular combustor. Intl J. Spray Combust.9 (4), 452-469.
[32] Feldhoff, J., Donner, R., Donges, J., Marwan, N. & Kurths, J.2012Geometric detection of coupling directions by means of inter-system recurrence networks. Phys. Lett. A376 (46), 3504-3513.
[33] Gao, Z., Zhang, X., Jin, N., Donner, R., Marwan, N. & Kurths, J.2013Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows. Europhys. Lett.103 (5), 50004.
[34] Ghirardo, G., Di Giovine, C., Moeck, J. & Bothien, M.2019Thermoacoustics of can-annular combustors. Trans. ASME J. Engng Gas Turbines Power141 (1), 011007.
[35] Ghirardo, G., Moeck, J. & Bothien, M.2020Effect of noise and nonlinearities on thermoacoustics of can-annular combustors. Trans. ASME J. Engng Gas Turbines Power142 (4), 041005.
[36] Godavarthi, V., Pawar, S., Unni, V., Sujith, R.I., Marwan, N. & Kurths, J.2018Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos28 (11), 113111.
[37] Godavarthi, V., Unni, V., Gopalakrishnan, E. & Sujith, R.I.2017Recurrence networks to study dynamical transitions in a turbulent combustor. Chaos27 (6), 063113.
[38] Gollub, J.P. & Benson, S.V.1980Many routes to turbulent convection. J. Fluid Mech.100 (3), 449-470.
[39] Gotoda, H., Kinugawa, H., Tsujimoto, R., Domen, S. & Okuno, Y.2017Characterization of combustion dynamics, detection, and prevention of an unstable combustion state based on a complex-network theory. Phys. Rev. Appl.7 (4), 044027.
[40] Guan, Y., Gupta, V. & Li, L.K.B.2020Intermittency route to self-excited chaotic thermoacoustic oscillations. J. Fluid Mech.894, R3. · Zbl 1460.76698
[41] Guan, Y., Gupta, V., Wan, M. & Li, L.K.B.2019aForced synchronization of quasiperiodic oscillations in a thermoacoustic system. J. Fluid Mech.879, 390-421. · Zbl 1430.76420
[42] Guan, Y., He, W., Murugesan, M., Li, Q., Liu, P. & Li, L.K.B.2019bControl of self-excited thermoacoustic oscillations using transient forcing, hysteresis and mode switching. Combust. Flame202, 262-275.
[43] Guan, Y., Li, L.K.B., Ahn, B. & Kim, K.T.2019cChaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode. Chaos29 (5), 053124.
[44] Guan, Y., Moon, K., Kim, K.T. & Li, L.K.B.2021Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators. Phys. Rev. E104 (2), 024216.
[45] Hachijo, T., Gotoda, H., Nishizawa, T. & Kazawa, J.2020Early detection of cascade flutter in a model aircraft turbine using a methodology combining complex networks and synchronization. Phys. Rev. Appl.14 (1), 014093.
[46] Halatek, J. & Frey, E.2018Rethinking pattern formation in reaction-diffusion systems. Nat. Phys.14 (5), 507-514.
[47] Hart, J., Bansal, K., Murphy, T. & Roy, R.2016Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos26 (9), 094801.
[48] Hashimoto, T., Shibuya, H., Gotoda, H., Ohmichi, Y. & Matsuyama, S.2019Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor. Phys. Rev. E99 (3), 032208.
[49] Heckl, M.2019Advances by the Marie Curie project TANGO in thermoacoustics. Intl J. Spray Combust.11, 1756827719830950.
[50] Hernandez-Rivera, R., Troiani, G., Pagliaroli, T. & Hernandez-Guerrero, A.2019Detection of the thermoacoustic combustion instabilities of a slot burner based on a diagonal-wise recurrence quantification. Phys. Fluids31 (12), 124105.
[51] Hilborn, R.C.2000Chaos and Nonlinear Dynamics. Oxford University Press. · Zbl 1015.37001
[52] Hoeijmakers, M., Kornilov, V., Arteaga, I., De Goey, P. & Nijmeijer, H.2014Intrinsic instability of flame-acoustic coupling. Combust. Flame161 (11), 2860-2867.
[53] Hyodo, H. & Biwa, T.2018Stabilization of thermoacoustic oscillators by delay coupling. Phys. Rev. E98 (5), 052223.
[54] Hyodo, H., Iwasaki, M. & Biwa, T.2020Suppression of Rijke tube oscillations by delay coupling. J. Appl. Phys.128 (9), 094902.
[55] Iacobello, G., Ridolfi, L. & Scarsoglio, S.2020A review on turbulent and vortical flow analyses via complex networks. Physica A563, 125476. · Zbl 1354.68230
[56] Jegal, H., Moon, K., Gu, J., Li, L.K.B. & Kim, K.T.2019Mutual synchronization of two lean-premixed gas turbine combustors: phase locking and amplitude death. Combust. Flame206, 424-437.
[57] Joseph, G. & Pakrashi, V.2020Limits on anti-phase synchronization in oscillator networks. Sci. Rep.10 (1), 10178.
[58] Juniper, M.P. & Sujith, R.I.2018Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech.50, 661-689. · Zbl 1384.76050
[59] Kalogirou, S.A.2003Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci.29 (6), 515-566.
[60] Kashinath, K., Li, L.K.B. & Juniper, M.P.2018Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech.838, 690-714. · Zbl 1419.76575
[61] Kaufmann, P., Krebs, W., Valdes, R. & Wever, U.2008 3D thermoacoustic properties of single can and multi can combustor configurations. In Turbo Expo, vol. 43130, pp. 527-538. ASME.
[62] Kemeth, F., Haugland, S. & Krischer, K.2018Symmetries of chimera states. Phys. Rev. Lett.120 (21), 214101. · Zbl 1409.34048
[63] Kiss, I.Z., Zhai, Y. & Hudson, J.L.2005Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett.94 (24), 248301.
[64] Kobayashi, T., Murayama, S., Hachijo, T. & Gotoda, H.2019aEarly detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning. Phys. Rev. Appl.11 (6), 064034.
[65] Kobayashi, W., Gotoda, H., Kandani, S., Ohmichi, Y. & Matsuyama, S.2019bSpatiotemporal dynamics of turbulent coaxial jet analyzed by symbolic information-theory quantifiers and complex-network approach. Chaos29 (12), 123110.
[66] Krishnan, A., Manikandan, R., Midhun, P., Reeja, K., Unni, V., Sujith, R.I., Marwan, N. & Kurths, J.2019aMitigation of oscillatory instability in turbulent reactive flows: a novel approach using complex networks. Europhys. Lett.128 (1), 14003.
[67] Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J.2019bOn the emergence of large clusters of acoustic power sources at the onset of thermoacoustic instability in a turbulent combustor. J. Fluid Mech.874, 455-482. · Zbl 1419.76695
[68] Krishnan, A., Sujith, R.I., Marwan, N. & Kurths, J.2021Suppression of thermoacoustic instability by targeting the hubs of the turbulent networks in a bluff body stabilized combustor. J. Fluid Mech.916, A20. · Zbl 1461.76540
[69] Kuramoto, Y.2003Chemical Oscillations, Waves, and Turbulence. Courier Corporation.
[70] Kuramoto, Y & Battogtokh, D2002Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst.5 (4), 380-385.
[71] Kuyuk, H., Yildirim, E., Dogan, E. & Horasan, G.2012Application of \(k\)-means and Gaussian mixture model for classification of seismic activities in Istanbul. Nonlinear Process. Geophys.19 (4), 411-419.
[72] Lee, K., Guillemot, L., Yue, Y., Kramer, M. & Champion, D.2012Application of the Gaussian mixture model in pulsar astronomy-pulsar classification and candidates ranking for the Fermi 2FGL catalogue. Mon. Not. R. Astron. Soc.424 (4), 2832-2840.
[73] Li, L.K.B. & Juniper, M.P.2013aLock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech.726, 624-655. · Zbl 1287.76015
[74] Li, L.K.B. & Juniper, M.P.2013bPhase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech.735, R5. · Zbl 1294.76029
[75] Lieuwen, T.C.2012Unsteady Combustor Physics. Cambridge University Press. · Zbl 1284.80001
[76] Lieuwen, T.C. & Yang, V.2005Combustion Instabilities in Gas Turbine Engines. AIAA.
[77] Lieuwen, T.C. & Zinn, B.T.1998The role of equivalence ratio oscillations in driving combustion instabilities in low \(NO_{\text{x}}\) gas turbines. Proc. Combust. Inst.27 (2), 1809-1816.
[78] Luque, S., Kanjirakkad, V., Aslanidou, I., Lubbock, R., Rosic, B. & Uchida, S.2015A new experimental facility to investigate combustor-turbine interactions in gas turbines with multiple can combustors. Trans. ASME J. Engng Gas Turbines Power137 (5), 051503.
[79] Magri, L., Juniper, M.P. & Moeck, J.P.2020Sensitivity of the Rayleigh criterion in thermoacoustics. J. Fluid Mech.882, R1. · Zbl 1430.76424
[80] Maistrenko, Y., Brezetsky, S., Jaros, P., Levchenko, R. & Kapitaniak, T.2017Smallest chimera states. Phys. Rev. E95 (1), 010203. · Zbl 1390.34136
[81] Manoj, K., Pawar, S., Dange, S., Mondal, S., Sujith, R.I., Surovyatkina, E. & Kurths, J.2019Synchronization route to weak chimera in four candle-flame oscillators. Phys. Rev. E100 (6), 062204.
[82] Manoj, K., Pawar, S.A. & Sujith, R.I.2021Experimental investigation on the susceptibility of minimal networks to a change in topology and number of oscillators. Phys. Rev. E103 (2), 022207.
[83] Manrubia, S.C., Mikhailov, A.S. & Zanette, D.2004Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems. World Scientific. · Zbl 1119.34001
[84] Mariappan, S., Sujith, R.I. & Schmid, P.J.2015Experimental investigation of non-normality of thermoacoustic interaction in an electrically heated Rijke tube. Intl J. Spray Combust. Dyn.7 (4), 315-352.
[85] Martin, S., Leber, H. & Martienssen, W.1984Oscillatory and chaotic states of the electrical conduction in barium sodium niobate crystals. Phys. Rev. Lett.53 (4), 303.
[86] Marwan, N., Donges, J., Zou, Y., Donner, R. & Kurths, J.2009Complex network approach for recurrence analysis of time series. Phys. Lett. A373 (46), 4246-4254. · Zbl 1234.05214
[87] Marwan, N., Romano, M., Thiel, M. & Kurths, J.2007Recurrence plots for the analysis of complex systems. Phys. Rep.438 (5), 237-329.
[88] Moeck, J., Durox, D., Schuller, T. & Candel, S.2019Nonlinear thermoacoustic mode synchronization in annular combustors. Proc. Combust. Inst.37 (4), 5343-5350.
[89] Mondal, S., Unni, V. & Sujith, R.I.2017Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. J. Fluid Mech.811, 659-681. · Zbl 1383.76535
[90] Mongia, H., Held, T., Hsiao, G. & Pandalai, R.2003Challenges and progress in controlling dynamics in gas turbine combustors. J. Propul. Power19 (5), 822-829.
[91] Moon, K., Guan, Y., Li, L.K.B. & Kim, K.T.2020aMutual synchronization of two flame-driven thermoacoustic oscillators: dissipative and time-delayed coupling effects. Chaos30 (2), 023110.
[92] Moon, K., Jegal, H., Gu, J. & Kim, K.T.2019Combustion-acoustic interactions through cross-talk area between adjacent model gas turbine combustors. Combust. Flame202, 405-416.
[93] Moon, K., Jegal, H., Yoon, C. & Kim, K.T.2020bCross-talk-interaction-induced combustion instabilities in a can-annular lean-premixed combustor configuration. Combust. Flame220, 178-188.
[94] Moon, K., Yoon, C. & Kim, K.T.2021Influence of rotational asymmetry on thermoacoustic instabilities in a can-annular lean-premixed combustor. Combust. Flame223, 295-306.
[95] Murayama, S. & Gotoda, H.2019Attenuation behavior of thermoacoustic combustion instability analyzed by a complex-network and synchronization-based approach. Phys. Rev. E99 (5), 052222.
[96] Murugesan, M. & Sujith, R.I.2015Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech.772, 225-245.
[97] Murugesan, M. & Sujith, R.I.2016Detecting the onset of an impending thermoacoustic instability using complex networks. J. Propul. Power32 (3), 707-712.
[98] Murugesan, M., Zhu, Y. & Li, L.K.B.2019Complex network analysis of forced synchronization in a hydrodynamically self-excited jet. Intl J. Heat Fluid Flow76, 14-25.
[99] Nair, V., Thampi, G. & Sujith, R.I.2014Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech.756, 470-487.
[100] Newhouse, S., Ruelle, D. & Takens, F.1978Occurrence of strange Axiom A attractors near quasiperiodic flows on \(t^m, m\geq 3\). Commun. Math. Phys.64 (1), 35-40. · Zbl 0396.58029
[101] Newman, M.2018Networks. Oxford University Press. · Zbl 1391.94006
[102] Nicoud, F. & Poinsot, T.2005Thermoacoustic instabilities: should the Rayleigh criterion be extended to include entropy changes?Combust. Flame142 (1-2), 153-159.
[103] Noiray, N. & Denisov, A.2017A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series. Proc. Combust. Inst.36 (3), 3843-3850.
[104] O’Connor, J., Hemchandra, S. & Lieuwen, T.C.2016 Combustion instabilities in lean premixed systems. In Lean Combustion (ed. D. Dunn-Rankin), pp. 231-259. Elsevier.
[105] Pagliaroli, T. & Troiani, G.2020Wavelet and recurrence analysis for lean blowout detection: an application to a trapped vortex combustor in thermoacoustic instability. Phys. Rev. Fluids5 (7), 073201.
[106] Panaggio, M. & Abrams, D.2015Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity28 (3), R67. · Zbl 1392.34036
[107] Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z., Wang, Z., Boccaletti, S. & Perc, M.2021Chimeras. Phys. Rep.898, 1-114. · Zbl 1490.34044
[108] Passarelli, M.L., Wabel, T.M., Cross, A., Venkatesan, K. & Steinberg, A.M.2021Cross-frequency coupling during thermoacoustic oscillations in a pressurized aeronautical gas turbine model combustor. Proc. Combust. Inst.38 (4), 6105-6113.
[109] Pavithran, I., Unni, V. & Sujith, R.I.2021Critical transitions and their early warning signals in thermoacoustic systems. Eur. Phys. J.230 (16), 3411-3432.
[110] Pawar, S., Mondal, S., George, N. & Sujith, R.I.2019Temporal and spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor. AIAA J.57 (2), 836-847.
[111] Pawar, S., Seshadri, A., Unni, V. & Sujith, R.I.2017Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech.827, 664-693. · Zbl 1460.76706
[112] Pearson, K.1895Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond.58, 240-242.
[113] Pikovsky, A., Rosenblum, M. & Kurths, J.2003Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press. · Zbl 1219.37002
[114] Pisarchik, A., Chholak, P. & Hramov, A.2019Brain noise estimation from MEG response to flickering visual stimulation. Chaos Solitons Fractals1, 100005.
[115] Poinsot, T.2017Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst.36 (1), 1-28.
[116] Poinsot, T., Trouve, A., Veynante, D., Candel, S. & Esposito, E.1987Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech.177, 265-292.
[117] Polifke, W.2020Modeling and analysis of premixed flame dynamics by means of distributed time delays. Prog. Energy Combust. Sci.79, 100845.
[118] Premalatha, K., Chandrasekar, V.K., Senthilvelan, M. & Lakshmanan, M.2018Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Chaos28 (3), 033110. · Zbl 1390.34148
[119] Press, W., Teukolsky, S., Vetterling, W. & Flannery, B.2007Numerical Recipes: The Art of Scientific Computing. Cambridge University Press. · Zbl 1132.65001
[120] Rayleigh, J.W.S.1945The Theory of Sound, 2nd edn. Dover Publications. · Zbl 0061.45904
[121] Reynolds, D.2009 Gaussian mixture models. In Encyclopedia of Biometrics (ed. S.Z. Li & A.K. Jain), vol. 741. Springer.
[122] Rousseeuw, P.1987Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Maths20, 53-65. · Zbl 0636.62059
[123] Von Saldern, J., Moeck, J. & Orchini, A.2021aNonlinear interaction between clustered unstable thermoacoustic modes in can-annular combustors. Proc. Combust. Inst.38 (4), 6145-6153.
[124] Von Saldern, J.G.R., Orchini, A. & Moeck, J.P.2021bAnalysis of thermoacoustic modes in can-annular combustors using effective Bloch-type boundary conditions. Trans. ASME J. Engng Gas Turbines Power143 (7), 071019.
[125] Sarkar, S., Chakravarthy, S., Ramanan, V. & Ray, A.2016Dynamic data-driven prediction of instability in a swirl-stabilized combustor. Intl J. Spray Combust.8 (4), 235-253.
[126] Schmid, P.J.2010Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[127] Schmid, P.J., Li, L.K.B., Juniper, M.P. & Pust, O.2011Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn.25 (1), 249-259. · Zbl 1272.76179
[128] Schuller, T., Poinsot, T. & Candel, S.2020Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech.894, P1. · Zbl 1460.80023
[129] Schwarz, G.1978Estimating the dimension of a model. Ann. Stat.6 (2), 461-464. · Zbl 0379.62005
[130] Shoji, T., Tachibana, S., Suzuki, T., Nakazumi, Y. & Yokomori, T.2021A new pattern of flame/flow dynamics for lean-premixed, low-swirl hydrogen turbulent jet flames under thermoacoustic instability. Proc. Combust. Inst.38 (2), 2835-2843.
[131] Silva, C., Emmert, T., Jaensch, S. & Polifke, W.2015Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame. Combust. Flame162 (9), 3370-3378.
[132] Strogatz, S.2001Exploring complex networks. Nature410 (6825), 268-276. · Zbl 1370.90052
[133] Sujith, R.I., Juniper, M.P. & Schmid, P.J.2016Non-normality and nonlinearity in thermoacoustic instabilities. Intl J. Spray Combust. Dyn.8 (2), 119-146.
[134] Sujith, R.I. & Unni, V.2020Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids32 (6), 061401.
[135] Sujith, R.I. & Unni, V.R.2021Dynamical systems and complex systems theory to study unsteady combustion. Proc. Combust. Inst.38 (3), 3445-3462.
[136] Taira, K., Nair, A. & Brunton, S.2016Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech.795, R2. · Zbl 1359.76124
[137] Thévenin, J., Romanelli, M., Vallet, M., Brunel, M. & Erneux, T.2011Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett.107 (10), 104101.
[138] Thomas, N., Mondal, S., Pawar, S. & Sujith, R.I.2018aEffect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators. Chaos28 (3), 033119. · Zbl 1390.34155
[139] Thomas, N., Mondal, S., Pawar, S.A. & Sujith, R.I.2018bEffect of noise amplification during the transition to amplitude death in coupled thermoacoustic oscillators. Chaos28 (9), 093116.
[140] Unni, V., Krishnan, A., Manikandan, R., George, N., Sujith, R.I., Marwan, N. & Kurths, J.2018On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor. Chaos28 (6), 063125.
[141] Unni, V. & Sujith, R.I.2016 Precursors to blowout in a turbulent combustor based on recurrence quantification. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference. AIAA Paper 2016-4649.
[142] Wang, W., Kiss, I.Z. & Hudson, J.L.2000Experiments on arrays of globally coupled chaotic electrochemical oscillators: synchronization and clustering. Chaos10 (1), 248-256.
[143] Watts, D. & Strogatz, S.1998Collective dynamics of ‘small-world’ networks. Nature393 (6684), 440-442. · Zbl 1368.05139
[144] Webber, C. Jr. & Zbilut, J.2005 Recurrence quantification analysis of nonlinear dynamical systems. In Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences (ed. M.A. Riley & G.C. Van Orden), chap. 2, pp. 26-94. National Science Foundation.
[145] Welch, P.1967The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.15 (2), 70-73.
[146] Wojewoda, J., Czolczynski, K., Maistrenko, Y. & Kapitaniak, T.2016The smallest chimera state for coupled pendula. Sci. Rep.6 (1), 34329.
[147] Yang, M. & Ahuja, N.1998 Gaussian mixture model for human skin color and its applications in image and video databases. In Storage and Retrieval for Image and Video Databases VII (ed. M.M. Yeung, B.L. Yeo & C.A. Bouman), vol. 3656, pp. 458-466. International Society for Optics and Photonics.
[148] Zakharova, A., Kapeller, M. & Schöll, E.2014Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett.112 (15), 154101.
[149] Zou, Y., Donner, R., Marwan, N., Donges, J. & Kurths, J.2019Complex network approaches to nonlinear time series analysis. Phys. Rep.787, 1-97.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.