×

Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states. (English) Zbl 1383.76535

Summary: Thermoacoustic systems with a turbulent reactive flow, prevalent in the fields of power and propulsion, are highly susceptible to oscillatory instabilities. Recent studies showed that such systems transition from combustion noise to thermoacoustic instability through a dynamical state known as intermittency, where bursts of large-amplitude periodic oscillations appear in a near-random fashion in between regions of low-amplitude aperiodic fluctuations. However, as these analyses were in the temporal domain, this transition remains still unexplored spatiotemporally. Here, we present the spatiotemporal dynamics during the transition from combustion noise to limit cycle oscillations in a turbulent bluff-body stabilized combustor. To that end, we acquire the pressure oscillations and the field of heat release rate oscillations through high-speed chemiluminescence (\(CH^{\ast }\)) images of the reaction zone. With a view to get an insight into this complex dynamics, we compute the instantaneous phases between acoustic pressure and local heat release rate oscillations. We observe that the aperiodic oscillations during combustion noise are phase asynchronous, while the large-amplitude periodic oscillations seen during thermoacoustic instability are phase synchronous. We find something interesting during intermittency: patches of synchronized periodic oscillations and desynchronized aperiodic oscillations coexist in the reaction zone. In other words, the emergence of order from disorder happens through a dynamical state wherein regions of order and disorder coexist, resembling a chimera state. Generally, mutually coupled chaotic oscillators synchronize but retain their dynamical nature; the same is true for coupled periodic oscillators. In contrast, during intermittency, we find that patches of desynchronized aperiodic oscillations turn into patches of synchronized periodic oscillations and vice versa. Therefore, the dynamics of local heat release rate oscillations change from aperiodic to periodic as they synchronize intermittently. The temporal variations in global synchrony, estimated through the Kuramoto order parameter, echoes the breathing nature of a chimera state.

MSC:

76V05 Reaction effects in flows
80A25 Combustion
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI

References:

[1] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 8, (2008)
[2] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, (2004) · doi:10.1103/PhysRevLett.93.174102
[3] Abugov, D. I.; Obrezkov, O. I., Acoustic noise in turbulent flames, Combust. Explos. Shock Waves, 14, 5, 606-612, (1978) · doi:10.1007/BF00789719
[4] Akkerman, V.; Law, C. K., Effect of acoustic coupling on power-law flame acceleration in spherical confinement, Phys. Fluids, 25, 1, (2013) · doi:10.1063/1.4773196
[5] Akkerman, V.; Law, C. K., Coupling of harmonic flow oscillations to combustion instability in premixed segments of triple flames, Combust. Flame, 172, 342-348, (2016) · doi:10.1016/j.combustflame.2016.07.019
[6] Akkerman, V.; Law, C. K.; Bychkov, V., Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering, Phys. Rev. E, 83, 2, (2011) · doi:10.1103/PhysRevE.83.026305
[7] Arumugam, E. M. E.; Spano, M. L., A chimeric path to neuronal synchronization, Chaos: An Interdiscipl. J. Nonlinear Sci., 25, 1, (2015) · Zbl 1374.92162 · doi:10.1063/1.4933300
[8] Balasubramanian, K.; Sujith, R. I., Non-normality and nonlinearity in combustion – acoustic interaction in diffusion flames, J. Fluid Mech., 594, 29-57, (2008) · Zbl 1159.76390 · doi:10.1017/S0022112007008737
[9] Blasius, B.; Amit, H.; Lewi, S., Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399, 354-359, (1999) · doi:10.1038/20676
[10] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys. Rep., 366, 1, 1-101, (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[11] Bychkov, V., Analytical scalings for flame interaction with sound waves, Phys. Fluids, 11, 10, 3168-3173, (1999) · Zbl 1149.76332 · doi:10.1063/1.870173
[12] Chaté, H.; Manneville, P., Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58, 2, 112-115, (1987) · doi:10.1103/PhysRevLett.58.112
[13] Culick, F. E. C., A note on Rayleigh’s criterion, Combust. Sci. Technol., 56, 4-6, 159-166, (1987) · doi:10.1080/00102208708947087
[14] Domen, S.; Gotoda, H.; Kuriyama, T.; Okuno, Y.; Tachibana, S., Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory, Proc. Combust. Inst., 35, 3, 3245-3253, (2015) · doi:10.1016/j.proci.2014.07.014
[15] Emerson, B.; Lieuwen, T.; Juniper, M. P., Local stability analysis and eigenvalue sensitivity of reacting bluff-body wakes, J. Fluid Mech., 788, 549-575, (2016) · doi:10.1017/jfm.2015.724
[16] Emerson, B.; O’Connor, J.; Juniper, M.; Lieuwen, T., Density ratio effects on reacting bluff-body flow field characteristics, J. Fluid Mech., 706, 219-250, (2012) · Zbl 1275.76223 · doi:10.1017/jfm.2012.248
[17] Fisher, S. C. & Rahman, S. A.2009 Remembering the giants: Apollo rocket propulsion development. NASA/SP-2009-4545.
[18] Gotoda, H.; Shinoda, Y.; Kobayashi, M.; Okuno, Y., Detection and control of combustion instability based on the concept of dynamical system theory, Phy. Rev. E, 89, 2, (2014)
[19] Guethe, F.; Guyot, D.; Singla, G.; Noiray, N.; Schuermans, B., Chemiluminescence as diagnostic tool in the development of gas turbines, Appl. Phys. B, 107, 3, 619-636, (2012) · doi:10.1007/s00340-012-4984-y
[20] Hardalupas, Y.; Orain, M., Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame, Combust. Flame, 139, 3, 188-207, (2004) · doi:10.1016/j.combustflame.2004.08.003
[21] Hubbard, S. & Dowling, A. P.1998 Acoustic instabilities in premix burners. AIAA Paper 98-2272.
[22] Kabiraj, L.; Sujith, R. I., Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout, J. Fluid Mech., 713, 376-397, (2012) · Zbl 1284.76170 · doi:10.1017/jfm.2012.463
[23] Keller, J. O.; Vaneveld, L.; Korschelt, D.; Hubbard, G. L.; Ghoniem, A. F.; Daily, J. W.; Oppenheim, A. K., Mechanism of instabilities in turbulent combustion leading to flashback, AIAA J., 20, 2, 254-262, (1982) · doi:10.2514/3.51073
[24] Kiss, I. Z.; Vilmos, G.; John, L. H., Experiments on synchronization and control of chaos on coupled electrochemical oscillators, J. Phys. Chem. B, 104, 7554-7560, (2000) · doi:10.1021/jp0006781
[25] Komarek, T.; Polifke, W., Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner, Trans. ASME J. Engng Gas Turbines Power, 132, 6, (2010) · doi:10.1115/1.4000127
[26] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence, vol. 19, (2012), Springer Science & Business Media · Zbl 0558.76051
[27] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 4, 380-385, (2002)
[28] Leon, G., Synchronization and rhythmic processes in physiology, Nature, 410, 277-284, (2001) · doi:10.1038/35065745
[29] Lieuwen, T. C., Phase drift characteristics of self-excited, combustion-driven oscillations, J. Sound Vib., 242, 5, 893-905, (2001) · doi:10.1006/jsvi.2000.3395
[30] Lieuwen, T. C., Unsteady Combustor Physics, (2012), Cambridge University Press · Zbl 1284.80001 · doi:10.1017/CBO9781139059961
[31] Lieuwen, T. C., Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor, J. Propul. Power, 18, 1, 61-67, (2002) · doi:10.2514/2.5898
[32] Lieuwen, T. C.; Yang, V., Combustion instabilities in gas turbine engines (operational experience, fundamental mechanisms and modeling), Prog. Astronaut. Aeronaut., 210, (2005)
[33] Lieuwen, T.; Zinn, B. T., Application of multipole expansions to sound generation from ducted unsteady combustion processes, J. Sound Vib., 235, 3, 405-414, (2000) · doi:10.1006/jsvi.1999.2934
[34] Madjarova, V.; Kadono, H.; Toyooka, S., Dynamic electronic speckle pattern interferometry (DESPI) phase analyses with temporal Hilbert transform, Opt. Express, 11, 6, 617-623, (2003) · doi:10.1364/OE.11.000617
[35] Nair, V.2014 Role of intermittency in the onset of combustion instability, PhD thesis, IIT Madras, India.
[36] Nair, V.; Sujith, R. I., Multifractality in combustion noise: predicting an impending instability, J. Fluid Mech., 747, 635-655, (2014) · doi:10.1017/jfm.2014.171
[37] Nair, V.; Sujith, R. I., Precursors to self-sustained oscillations in aeroacoustic systems, Intl J. Aeroacoust., 15, 3, 312-323, (2016) · doi:10.1177/1475472X16630877
[38] Nair, V.; Thampi, G.; Karuppusamy, S.; Gopalan, S.; Sujith, R., Loss of chaos in combustion noise as a precursor of impending combustion instability, Intl J. Spray Combust. Dyn., 5, 4, 273-290, (2013) · doi:10.1260/1756-8277.5.4.273
[39] Nair, V.; Thampi, G.; Sujith, R. I., Intermittency route to thermoacoustic instability in turbulent combustors, J. Fluid Mech., 756, 470-487, (2014) · doi:10.1017/jfm.2014.468
[40] Noiray, N.; Schuermans, B., Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors, Intl J. Non-Linear Mech., 50, 152-163, (2013) · doi:10.1016/j.ijnonlinmec.2012.11.008
[41] Panaggio, M. J.; Abrams, D. M., Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67-R87, (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[42] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12, (2003), Cambridge University Press · Zbl 1219.37002
[43] Poinsot, T. J.; Trouve, A. C.; Veynante, D. P.; Candel, S. M.; Esposito, E. J., Vortex-driven acoustically coupled combustion instabilities, J. Fluid Mech., 177, 265-292, (1987) · doi:10.1017/S0022112087000958
[44] Romano, M. C.; Thiel, M.; Kurths, J.; Kiss, I. Z.; Hudson, J. L., Detection of synchronization for non-phase-coherent and non-stationary data, Europhys. Lett., 71, 3, 466-472, (2005) · doi:10.1209/epl/i2005-10095-1
[45] Sattelmayer, T., Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations, Trans. ASME J. Engng Gas Turbines Power, 125, 1, 11-19, (2003) · doi:10.1115/1.1365159
[46] Searby, G., Acoustic instability in premixed flames, Combust. Sci. Technol., 81, 4-6, 221-231, (1992) · doi:10.1080/00102209208951803
[47] Searby, G.; Rochwerger, D., A parametric acoustic instability in premixed flames, J. Fluid Mech., 231, 529-543, (1991) · Zbl 0735.76035 · doi:10.1017/S002211209100349X
[48] Sethares, W. A., Rhythm and Transforms, (2007), Springer Science & Business Media · Zbl 1189.94002
[49] Shanbhogue, S.; Shin, D. H.; Hemchandra, S.; Plaks, D.; Lieuwen, T., Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing, Proc. Combust. Inst., 32, 2, 1787-1794, (2009) · doi:10.1016/j.proci.2008.06.034
[50] Shanbhogue, S. J.; Seelhorst, M.; Lieuwen, T., Vortex phase-jitter in acoustically excited bluff body flames, Intl J. Spray Combust. Dynam., 1, 3, 365-387, (2009) · doi:10.1260/175682709789141528
[51] Shraiman, B. I., Order, disorder, and phase turbulence, Phys. Rev. Lett., 57, 325-328, (1986) · doi:10.1103/PhysRevLett.57.325
[52] Smith, D. A.1985 Experimental study of acoustically excited, vortex driven, combustion instability within a rearward facing step combustor. PhD thesis, California Inst. Tech., Pasadena, USA.
[53] Strahle, W., Combustion noise, Prog. Energy Combust. Sci., 4, 3, 157-176, (1978) · doi:10.1016/0360-1285(78)90002-3
[54] Suresha, S.; Sujith, R. I.; Emerson, B.; Lieuwen, T., Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter, Phys. Rev. E, 94, (2016)
[55] Thumuluru, S. K.; Lieuwen, T., Characterization of acoustically forced swirl flame dynamics, Proc. Combust. Inst., 32, 2, 2893-2900, (2009) · doi:10.1016/j.proci.2008.05.037
[56] Tony, J.; Gopalakrishnan, E. A.; Sreelekha, E.; Sujith, R. I., Detecting deterministic nature of pressure measurements from a turbulent combustor, Phys. Rev. E, 92, 6, (2015) · doi:10.1103/PhysRevE.92.062902
[57] Trickey, S. T.; Virgin, L. N.; Dowell, E. H., The stability of limit – cycle oscillations in a nonlinear aeroelastic system, Proc. Math. Phys. Engng Sci., 458, 2025, 2203-2226, (2002) · Zbl 1152.74304 · doi:10.1098/rspa.2002.0965
[58] Tyson, J. J.1994What everyone should know about the Belousov-Zhabotinsky reaction. In Frontiers in Mathematical Biology, pp. 569-587. Springer. doi:10.1007/978-3-642-50124-1_33 · Zbl 0925.92068
[59] Unni, V. R.; Sujith, R. I., Multifractal characteristics of combustor dynamics close to lean blowout, J. Fluid Mech., 784, 30-50, (2015) · doi:10.1017/jfm.2015.567
[60] Venkatramani, J.; Nair, V.; Sujith, R. I.; Gupta, S.; Sarkar, S., Precursors to flutter instability by an intermittency route: a model free approach, J. Fluids Struct., 61, 376-391, (2016) · doi:10.1016/j.jfluidstructs.2015.11.015
[61] Wilhite, J. M., Dolan, B. J., Gomez, R. V., Kabiraj, L., Paschereit, C. O. & Gutmark, E.2016 Analysis of combustion oscillations in a staged MLDI burner using decomposition methods and recurrence analysis. AIAA Paper 2016-1156.
[62] Winfree, A. T., The Geometry of Biological Time, vol. 12, (2001), Springer Science & Business Media · Zbl 1014.92001 · doi:10.1007/978-1-4757-3484-3
[63] Wu, X.; Law, C. K., Flame-acoustic resonance initiated by vortical disturbances, J. Fluid Mech., 634, 321-357, (2009) · Zbl 1183.76924 · doi:10.1017/S0022112009007393
[64] Zukoski, E. E. & Smith, D. A.1985 Combustion instability sustained by unsteady vortex combustion. In AIAA, SA Propulsion Conference, Monterey, CA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.