×

Intermittency route to self-excited chaotic thermoacoustic oscillations. (English) Zbl 1460.76698

Summary: In nonlinear dynamics, there are three classic routes to chaos, namely the period-doubling route, the Ruelle-Takens-Newhouse route and the intermittency route. The first two routes have previously been observed in self-excited thermoacoustic systems, but the third has not. In this experimental study, we present evidence of the intermittency route to chaos in the self-excited regime of a prototypical thermoacoustic system – a laminar flame-driven Rijke tube. We identify the intermittency to be of type II from the Pomeau-Manneville scenario through an analysis of (i) the probability distribution of the quiescent epochs between successive bursts of chaos, (ii) the first return map, and (iii) the recurrence plot. By establishing the last of the three classic routes to chaos, this study strengthens the universality of how strange attractors arise in self-excited thermoacoustic systems, paving the way for the application of generic suppression strategies based on chaos control.

MSC:

76Q05 Hydro- and aero-acoustics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
76E99 Hydrodynamic stability

Keywords:

chaos; bifurcation

References:

[1] Boudy, F., Durox, D., Schuller, T. & Candel, S.2012Nonlinear flame describing function analysis of galloping limit cycles featuring chaotic states in premixed combustors. In ASME Turbo Expo, pp. 713-724. American Society of Mechanical Engineers.
[2] Chiocchini, S., Pagliaroli, T., Camussi, R. & Giacomazzi, E.2017Chaotic and linear statistics analysis in thermoacoustic instability detection. J. Propul. Power34 (1), 15-26.
[3] Domen, S., Gotoda, H., Kuriyama, T., Okuno, Y. & Tachibana, S.2015Detection and prevention of blowout in a lean premixed gas-turbine model combustor using the concept of dynamical system theory. Proc. Combust. Inst.35 (3), 3245-3253.
[4] Eckmann, J. P., Kamphorst, S. O. & Ruelle, D.1987Recurrence plots of dynamical systems. Eur. Phys. Lett.4 (9), 973-977.
[5] Feigenbaum, M. J.1978Quantitative universality for a class of nonlinear transformations. J. Stat. Phys.19 (1), 25-52. · Zbl 0509.58037
[6] Fichera, A., Losenno, C. & Pagano, A.2001Experimental analysis of thermo-acoustic combustion instability. Appl. Energ.70 (2), 179-191.
[7] Gollub, J. P. & Benson, S. V.1980Many routes to turbulent convection. J. Fluid Mech.100 (3), 449-470.
[8] Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S.2011Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos21 (1), 013124.
[9] Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y. & Tachibana, S.2014Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E89 (2), 022910.
[10] Gottwald, G. A. & Melbourne, I.2004A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A460 (2042), 603-611. · Zbl 1042.37060
[11] Grassberger, P. & Procaccia, I.1983Characterization of strange attractors. Phys. Rev. Lett.50 (5), 346-349.
[12] Guan, Y., Gupta, V., Kashinath, K. & Li, L. K. B.2019aOpen-loop control of periodic thermoacoustic oscillations: experiments and low-order modelling in a synchronization framework. Proc. Combust. Inst.37, 5315-5323.
[13] Guan, Y., Gupta, V., Wan, M. & Li, L. K. B.2019bForced synchronization of quasiperiodic oscillations in a thermoacoustic system. J. Fluid Mech.879, 390-421. · Zbl 1430.76420
[14] Guan, Y., Li, L. K. B., Ahn, B. & Kim, K. T.2019cChaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode. Chaos29 (5), 053124.
[15] Guan, Y., Murugesan, M. & Li, L. K. B.2018Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing. Chaos28 (9), 093109.
[16] Hammer, P. W., Platt, N., Hammel, S. M., Heagy, J. F. & Lee, B. D.1994Experimental observation of on-off intermittency. Phys. Rev. Lett.73 (8), 1095.
[17] Hilborn, R. C.2000Chaos and Nonlinear Dynamics. Oxford University Press. · Zbl 1015.37001
[18] Huhn, F. & Magri, L.2020Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid Mech.882, A24. · Zbl 1430.76421
[19] Juniper, M. P. & Sujith, R. I.2018Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech.50, 661-689. · Zbl 1384.76050
[20] Kabiraj, L., Saurabh, A., Karimi, N., Sailor, A., Mastorakos, E., Dowling, A. P. & Paschereit, C. O.2015Chaos in an imperfectly premixed model combustor. Chaos25 (2), 023101.
[21] Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I.2012Route to chaos for combustion instability in ducted laminar premixed flames. Chaos22 (2), 023129.
[22] Kabiraj, L. & Sujith, R. I.2012Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech.713, 376-397. · Zbl 1284.76170
[23] Kashinath, K., Waugh, I. C. & Juniper, M. P.2014Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech.761, 399-430.
[24] Keanini, R., Yu, K. & Daily, J.1989Evidence of a strange attractor in ramjet combustion. In 27th AIAA Aerospace Sciences Meeting, p. 624. American Institute of Aeronautics and Astronautics.
[25] Klimaszewska, K. & Żebrowski, J. J.2009Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E80 (2), 026214.
[26] Kulp, C. W. & Zunino, L.2014Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Chaos24 (3), 033116. · Zbl 1374.37104
[27] Lei, S. & Turan, A.2009Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theor. Model.13 (3), 541-557. · Zbl 1176.80082
[28] Li, L. K. B. & Juniper, M. P.2013aLock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech.726, 624-655. · Zbl 1287.76015
[29] Li, L. K. B. & Juniper, M. P.2013bPhase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech.735, R5. · Zbl 1294.76029
[30] Lieuwen, T. C. & Yang, V.2005Combustion Instabilities in Gas Turbine Engines. American Institute of Aeronautics and Astronautics.
[31] Murayama, S., Kinugawa, H., Tokuda, I. T. & Gotoda, H.2018Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory. Phys. Rev. E97 (2), 022223.
[32] Murugesan, M. & Sujith, R. I.2015Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech.772, 225-245.
[33] Nair, V. & Sujith, R. I.2014Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech.747, 635-655.
[34] Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I.2013Loss of chaos in combustion noise as a precursor of impending combustion instability. Intl J. Spray Combust.5 (4), 273-290.
[35] Nair, V., Thampi, G. & Sujith, R. I.2014Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech.756, 470-487.
[36] Newhouse, S., Ruelle, D. & Takens, F.1978Occurrence of strange Axiom A attractors near quasiperiodic flows on t^m, m⩾3. Commun. Math. Phys.64 (1), 35-40. · Zbl 0396.58029
[37] Nuñez, A., Lacasa, L., Valero, E., Gómez, J. P. & Luque, B.2012Detecting series periodicity with horizontal visibility graphs. Intl J. Bifurcation Chaos22 (07), 1250160. · Zbl 1271.62206
[38] Orchini, A., Illingworth, S. J. & Juniper, M. P.2015Frequency domain and time domain analysis of thermoacoustic oscillations with wave-based acoustics. J. Fluid Mech.775, 387-414. · Zbl 1403.76177
[39] Pawar, S. A., Vishnu, R., Vadivukkarasan, M., Panchagnula, M. V. & Sujith, R. I.2016Intermittency route to combustion instability in a laboratory spray combustor. Trans. ASME J. Engng Gas Turbines Power138 (4), 041505.
[40] Poinsot, T.2017Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst.36 (1), 1-28.
[41] Pomeau, Y. & Manneville, P.1980Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys.74 (2), 189-197.
[42] Sacher, J., Elsässer, W. & Göbel, E. O.1989Intermittency in the coherence collapse of a semiconductor laser with external feedback. Phys. Rev. Lett.63 (20), 2224-2227.
[43] Schöll, E. & Schuster, H. G.2008Handbook of Chaos Control. John Wiley & Sons. · Zbl 1130.93001
[44] Schuster, H. G. & Just, W.2006Deterministic Chaos. John Wiley & Sons. · Zbl 1094.37001
[45] Sterling, J. D.1993Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol.89 (1-4), 167-179.
[46] Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P.2010Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust.2, 325-355.
[47] Suresh, S.1998Fatigue of Materials. Cambridge University Press.
[48] Tony, J., Gopalakrishnan, E. A., Sreelekha, E. & Sujith, R. I.2015Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E92 (6), 062902.
[49] Unni, V. R. & Sujith, R. I.2017Flame dynamics during intermittency in a turbulent combustor. Proc. Combust. Inst.36 (3), 3791-3798.
[50] Vishnu, R., Sujith, R. I. & Aghalayam, P.2015Role of flame dynamics on the bifurcation characteristics of a ducted V-flame. Combust. Sci. Technol.187 (6), 894-905.
[51] Waugh, I. C., Kashinath, K. & Juniper, M. P.2014Matrix-free continuation of limit cycles and their bifurcations for a ducted premixed flame. J. Fluid Mech.759, 1-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.