×

Cohomology of \(p\)-adic Stein spaces. (English) Zbl 1475.11110

Let \(\mathcal{O}_K\) be a discrete valuation ring of mixed characteristic \((0,p)\), with residue field \(k\) and fraction field \(K\). Let \(C\) be the complete algebraic closure of \(K\).
The authors explain how to compute the pro-étale cohomology of the analytic space \(X_C\) associated to a “semistable Stein weak formal scheme” \(X\) over \(\mathcal{O}_K\). The main theorem is that \(H^r_{\text{pro-étale}}(X_C,\mathbb{Q}_p(r))\) can be determined by the following objects:
– (some part of) the overconvergent Hyodo-Kato cohomology of the reduction \(X \otimes_{\mathcal{O}_K} k\),
– closed \(r\)-forms on \(X_C\), and
– the de Rham cohomology \(H^r_{\mathrm{DR}}(X_C)\).
Indeed, \(H^r_{\text{pro-étale}}(X_C,\mathbb{Q}_p(r))\) is the pullback of a diagram of the form \[ \left(H_{\mathrm{HK}}^{r}(X_k)\otimes \mathbb{B}_{\mathrm{st}}\right)^{\substack{N=0\\ \varphi=p^r}} \to H^r_{\mathrm{DR}}(X_C) \leftarrow \Omega^{r}(X_C)^{d=0} \]
The pro-étale cohomology and the above mentioned gadgets are related by the syntomic cohomology. Via the period morphism, the pro-étale cohomology and syntomic cohomology can be identified after a truncation. The authors then introduce a Bloch-Kato type syntomic cohomology, which is more concrete, and prove the two syntomic theories are isomorphic.
The theorem is used to calculate the étale and pro-étale cohomology of Drinfeld half-spaces.

MSC:

11F85 \(p\)-adic theory, local fields
14F20 Étale and other Grothendieck topologies and (co)homologies
14F30 \(p\)-adic cohomology, crystalline cohomology
20G25 Linear algebraic groups over local fields and their integers
22Fxx Noncompact transformation groups
14G20 Local ground fields in algebraic geometry

References:

[1] Bambozzi, F.: On a generalization of affinoid varieties. Ph.D. thesis, University of Padova. arXiv:1401.5702 [math.AG] (2013)
[2] Berkovich, V., On the comparison theorem for étale cohomology of non-Archimedean analytic spaces, Israel J. Math., 92, 45-59 (1995) · Zbl 0864.14011
[3] Berkovich, V., Smooth \(p\)-adic analytic spaces are locally contractible, Invent. Math., 137, 1-84 (1999) · Zbl 0930.32016
[4] Berkovich, V.: Complex analytic vanishing cycles for formal schemes, preprint · Zbl 0791.14008
[5] Bhatt, B.; Morrow, M.; Scholze, P., Integral \(p\)-adic Hodge theory, Publ. IHES, 128, 219-397 (2018) · Zbl 1446.14011
[6] Bhatt, B.; Morrow, M.; Scholze, P., Topological Hochschild homology and integral \(p\)-adic Hodge theory, Publ. IHES, 129, 199-310 (2019) · Zbl 1478.14039
[7] Bloch, S.; Kato, K., \(p\)-adic étale cohomology, Publ. IHES, 63, 107-152 (1986) · Zbl 0613.14017
[8] Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math. 86, Birkhäuser (1990) · Zbl 0768.14001
[9] Boggi, M.; Cook, Gc, Continuous cohomology and homology of profinite groups, Doc. Math., 21, 1269-1312 (2016) · Zbl 1401.20027
[10] Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive groups. Mathematical Surveys and Monographs, vol. 67, 2nd edn. American Mathematical Society, New York (2000) · Zbl 0980.22015
[11] Bosco, G., \(p\)-adic cohomology of Drinfeld spaces, M2 thesis (2019), Paris-sud: Univ, Paris-sud
[12] Česnavičius, K.; Koshikawa, T., The \(A_{{\rm inf}}\)-cohomology in the semistable case, Compositio Math., 155, 2039-2128 (2019) · Zbl 1451.14077
[13] Chiarellotto, B.; Le Stum, B., Pentes en cohomologie rigide et F-isocristaux unipotents, Manuscr. Math., 100, 455-468 (1999) · Zbl 0980.14016
[14] Colmez, P., Espaces de Banach de dimension finie, J. Inst. Math. Jussieu, 1, 331-439 (2002) · Zbl 1044.11102
[15] Colmez, P., Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque, 319, 117-186 (2008) · Zbl 1168.11021
[16] Colmez, P., Représentations de \(GL_2({\mathbf{Q}}_p)\) et \((\phi,\Gamma )\)-modules, Astérisque, 330, 281-509 (2010) · Zbl 1218.11107
[17] Colmez, P., Dospinescu, G., Nizioł, W.: Cohomologie \(p\)-adique de la tour de Drinfeld: le cas de la dimension 1. arXiv:1704.08928 [math.NT] (to appear in J. Amer. Math. Soc) · Zbl 1451.11029
[18] Colmez, P., Dospinescu, G., Nizioł, W.: The integral \(p\)-adic étale cohomology of Drinfeld symmetric spaces. arXiv:1905.11495 [math.AG] · Zbl 1504.14041
[19] Colmez, P.; Dospinescu, G.; Paškūnas, V., The \(p\)-adic local Langlands correspondence for \(GL_2({\mathbf{Q}}_p)\), Camb. J. Math., 2, 1-47 (2014) · Zbl 1312.11090
[20] Colmez, P.; Nizioł, W., Syntomic complexes and \(p\)-adic nearby cycles, Invent. Math., 208, 1-108 (2017) · Zbl 1395.14013
[21] Colmez, P., Nizioł, W.: On the cohomology of the affine space. In: \(p\)-adic Hodge theory (2017), Simons Symposia, Springer (to appear). arXiv:1707.01133 [math.AG] · Zbl 1440.14103
[22] De Shalit, E., The \(p\)-adic monodromy-weight conjecture for \(p\)-adically uniformized varieties, Compos. Math., 141, 101-120 (2005) · Zbl 1087.14019
[23] Drinfeld, Vg, Elliptic modules, Math. Sb., 94, 594-627 (1974)
[24] Drinfel’D, Vg, Coverings of \(p\)-adic symmetric regions, Funct. Anal. Appl., 10, 2, 107-115 (1976) · Zbl 0346.14010
[25] Emerton, M., Locally analytic vectors in representations of locally analytic \(p\)-adic groups, Mem. Am. Math. Soc., 248, 1175 (2017) · Zbl 1430.22020
[26] Fontaine, J-M; Messing, W.; Ribet, K., \(p\)-adic periods and \(p\)-adic étale cohomology, Current Trends in Arithmetical Algebraic Geometry, 179-207 (1987), New York: American Mathematical Society, New York · Zbl 0632.14016
[27] Fresnel, J.; Van Der Put, M., Rigid Analytic Geometry and Its Applications, Progress in Mathematics (2004), Boston: Birkäuser, Boston · Zbl 1096.14014
[28] Gros, M., Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France, 21, 1-87 (1985) · Zbl 0615.14011
[29] Grosse-Klönne, E., Rigid analytic spaces with overconvergent structure sheaf, J. Reine Angew. Math., 519, 73-95 (2000) · Zbl 0945.14013
[30] Grosse-Klönne, E., De Rham cohomology of rigid spaces, Math. Z., 247, 223-240 (2004) · Zbl 1078.14026
[31] Grosse-Klönne, E., Compactifications of log morphisms, Tohoku Math. J., 56, 79-104 (2004) · Zbl 1082.14001
[32] Grosse-Klönne, E., Frobenius and monodromy operators in rigid analysis, and Drinfeld’s symmetric space, J. Algebraic Geom., 14, 391-437 (2005) · Zbl 1084.14021
[33] Grosse-Klönne, E., Integral structures in the \(p\)-adic holomorphic discrete series, Represent. Theory, 9, 354-384 (2005) · Zbl 1068.14025
[34] Grosse-Klönne, E., Acyclic coefficient systems on buildings, Compos. Math., 141, 769-786 (2005) · Zbl 1138.20034
[35] Grosse-Klönne, E., Sheaves of bounded \(p\)-adic logarithmic differential forms, Ann. Sci. École Norm. Sup., 40, 351-386 (2007) · Zbl 1163.14012
[36] Grosse-Klönne, E., On special representations of \(p\)-adic reductive groups, Duke Math. J., 163, 2179-2216 (2014) · Zbl 1298.22018
[37] Hyodo, O., A note on \(p\)-adic étale cohomology in the semistable reduction case, Invent. Math., 91, 543-557 (1988) · Zbl 0619.14013
[38] Hyodo, O.; Kato, K., Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque, 223, 221-268 (1994) · Zbl 0852.14004
[39] Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig (1996) · Zbl 0868.14010
[40] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup., 12, 501-661 (1979) · Zbl 0436.14007
[41] Illusie, L.; Raynaud, M., Les suites spectrales associées au complexe de de Rham-Witt, Inst. Hautes Études Sci. Publ. Math., 57, 73-212 (1983) · Zbl 0538.14012
[42] Illusie, L.: Ordinarité des intersections complètes générales. The Grothendieck Festschrift, Vol. II, 376-405, Progr. Math. 87, Birkhäuser (1990) · Zbl 0728.14021
[43] Illusie, L.: On the category of sheaves of objects of \({\mathscr{D}}(R)\) (after Beilinson and Lurie), notes (2013)
[44] Iovita, A.; Spiess, M., Logarithmic differential forms on \(p\)-adic symmetric spaces, Duke Math. J., 110, 253-278 (2001) · Zbl 1100.14505
[45] Kashiwara, M.; Schapira, P., Ind-sheaves. Astérisque, 271, 136 (2001) · Zbl 0993.32009
[46] Kashiwara, M., Schapira, P.: Categories and sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006) · Zbl 1118.18001
[47] Kato, K., Semi-stable reduction and \(p\)-adic étale cohomology, Astérisque, 223, 269-293 (1994) · Zbl 0847.14009
[48] Keller, B.: Derived categories and their uses. In: Handbook of Algebra, Vol. 1, pp. 671-701, Handb. Algebr., vol. 1. Elsevier, North-Holland (1996) · Zbl 0862.18001
[49] Kato, K.: Logarithmic Structures of Fontaine-Illusie Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191-224. Johns Hopkins University Press, Baltimore (1989) · Zbl 0776.14004
[50] Langer, A.; Muralidharan, A., An analogue of Raynaud’s theorem: weak formal schemes and dagger spaces, Münster J. Math., 6, 271-294 (2013) · Zbl 1317.14053
[51] Le Bras, A-C, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J., 167, 3455-3532 (2018) · Zbl 1439.14085
[52] Lorenzon, P., Logarithmic Hodge-Witt forms and Hyodo-Kato cohomology, J. Algebra, 249, 247-265 (2002) · Zbl 1085.14506
[53] Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009) · Zbl 1175.18001
[54] Lurie, J.: Higher Algebra, preprint
[55] Mangino, Em, (LF)-spaces and tensor products, Math. Nachr., 185, 149-162 (1997) · Zbl 0916.46002
[56] Meredith, D., Weak formal schemes, Nagoya Math. J., 45, 1-38 (1972) · Zbl 0207.51502
[57] Mokrane, A., La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J., 72, 301-337 (1993) · Zbl 0834.14010
[58] Nakkajima, Y., \(p\)-adic weight spectral sequences of log varieties, J. Math. Sci. Univ. Tokyo, 12, 513-661 (2005) · Zbl 1108.14015
[59] Nekovář, J.; Nizioł, W., Syntomic cohomology and \(p\)-adic regulators for varieties over \(p\)-adic fields, Algebra Number Theory, 10, 1695-1790 (2016) · Zbl 1375.14081
[60] Ogus, A.: The convergent topos in characteristic \(p\). In: The Grothendieck Festschrift, vol. 3, pp. 133-162, Progress in Mathematics, 88, Birkhäuser (1990) · Zbl 0728.14020
[61] Ogus, A.: Lectures on Logarithmic Algebraic Geometry. Cambridge Studies in Advanced Mathematics, vol. 178. Cambridge University Press, Cambridge (2018) · Zbl 1437.14003
[62] Orlik, S., Equivariant vector bundles on Drinfeld’s upper half space, Invent. Math., 172, 585-656 (2008) · Zbl 1136.22009
[63] Orlik, S., The de Rham cohomology of Drinfeld’s half space, Münster J. Math., 8, 169-179 (2015) · Zbl 1358.11065
[64] Orlik, S.: The pro-étale cohomology of Drinfeld’s upper half space. arXiv:1908.10591 [math.NT] (2019) · Zbl 1481.14037
[65] Orlik, S.; Schraen, B., The Jordan-Hölder series of the locally analytic Steinberg representation, Doc. Math., 19, 647-671 (2014) · Zbl 1300.22012
[66] Orlik, S.; Strauch, M., On Jordan-Hölder series of some locally analytic representations, J. Am. Math. Soc., 28, 99-157 (2015) · Zbl 1307.22009
[67] Perez-Garcia, C., Schikhof, W.H.: Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge Studies in Advanced Mathematics, vol. 119. Cambridge University Press, Cambridge (2010) · Zbl 1193.46001
[68] Prosmans, F., Derived categories for functional analysis, Publ. Res. Inst. Math. Sci., 36, 19-83 (2000) · Zbl 0973.46069
[69] Saito, T., Weight spectral sequences and independence of \(\ell \), J. Inst. Math. Jussieu, 2, 583-634 (2003) · Zbl 1084.14027
[70] Schimann, J., Ferrier, G., Houzel, C.: In: Houzel, C. (ed.) Seminaire Banach. Lecture Notes in Mathematics, vol. 277. Springer (1972) · Zbl 0239.46075
[71] Schneider, P.; Stuhler, U., The cohomology of \(p\)-adic symmetric spaces, Invent. Math., 105, 47-122 (1991) · Zbl 0751.14016
[72] Schneider, P., Nonarchimedean Functional Analysis (2002), Berlin: Springer Monographs in Mathematics. Springer, Berlin · Zbl 0998.46044
[73] Schneiders, J.-P.: Quasi-Abelian Categories and Sheaves. Mém. Soc. Math. Fr. 76, (1999) · Zbl 0926.18004
[74] Scholze, P.: \(p\)-adic Hodge Theory for Rigid-Analytic Varieties. Forum Math. Pi 1 , e1, 77 (2013) · Zbl 1297.14023
[75] Shiho, A.: Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology. J. Math. Sci. Univ. Tokyo 9, 1-163 (2002) · Zbl 1057.14025
[76] Shiho, A.: Relative log convergent cohomology and relative rigid cohomology I. arxiv:0707.1742v2 [math.NT] · Zbl 1057.14025
[77] Shiho, A.: Relative log convergent cohomology and relative rigid cohomology II. arXiv:0707.1743 [math.NT] · Zbl 1057.14025
[78] The Stacks project authors, The Stacks Project. http://stacks.math.columbia.edu (2018)
[79] Tsuji, T., \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., 137, 233-411 (1999) · Zbl 0945.14008
[80] Varol, O., On the derived tensor product functors for (DF)- and Fréchet spaces, Studia Math., 180, 41-71 (2007) · Zbl 1138.46045
[81] Vezzani, A., The Monsky-Washnitzer and the overconvergent realizations, Int. Math. Res. Not. IMRN, 2018, 3443-3489 (2018) · Zbl 1423.14160
[82] Vignéras, M.-F.: Représentations \(\ell \)-modulaires d’un groupe réductif \(p\)-adique avec \(\ell \ne p\). Progr. Math. 137. Birkhäuser (1996) · Zbl 0859.22001
[83] Wengenroth, J., Acyclic inductive spectra of Fréchet spaces, Studia Math., 120, 247-258 (1996) · Zbl 0863.46002
[84] Witte, M., On a localisation sequence for the K-theory of skew power series rings, J. K Theory, 11, 125-154 (2013) · Zbl 1270.16035
[85] Zheng, W.: Note on derived \(\infty \)-categories and monoidal structures, notes (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.