×

Compactifications of log morphisms. (English) Zbl 1082.14001

Let \(T\) be a log scheme. The author calls a \(T\)-log scheme with boundary the following data: a morphism of log schemes \(X \rightarrow T\) together with an open log schematically dense embedding of log schemes \(i\colon X\rightarrow \overline{X}\) so that \(\overline{X}\) coincides with the schematic image of \(i.\) The relative logarithmic de Rham complex on \(X\) is extended naturally on \(\overline{X},\) the compactification of \(X.\) The aim of the paper is to obtain a smoothness criterion for \(T\)-log schemes with boundary formulated in terms of morphisms of monoids. The author underlines that his criterion is very similar to Kato’s criterion for log smoothness [K. Kato, in: Algebraic analysis, geometry, and number theory, Proc. JAMI Inaug. Conf., Baltimore/MD (USA) 1988, 191–224 (1989; Zbl 0776.14004)]. He then considers in some details semistable \(k\)-log schemes with boundary (\(k\) is a field) in the context of the de Rham and crystalline cohomology theories, discusses relations between crystalline and convergent cohomologies [A. Ogus, Compos. Math. 97, No. 1–2, 187–225 (1995; Zbl 0849.14008)], with the theory of integrable log connections with regular singularities, etc.

MSC:

14A15 Schemes and morphisms
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F30 \(p\)-adic cohomology, crystalline cohomology
14F40 de Rham cohomology and algebraic geometry

References:

[1] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, Première partie, Prépublication IRMAR 96-03, Université de Rennes, 1996.
[2] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329–377. · Zbl 0908.14005 · doi:10.1007/s002220050143
[3] A. Grothendieck (avec J. Dieudonné), Eléments de géométrie algébrique, Publ. Math. Inst. Hautes Etudes Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1960–67).
[4] E. Groriptsizeß e-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel’d’s symmetric space, · Zbl 1084.14021 · doi:10.1090/S1056-3911-05-00402-9
[5] O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Asterisque 223 (1994), 221–268. · Zbl 0852.14004
[6] F. Kato, Log smooth deformation theory, Tôhoku Math. J. 48 (1996), 317–354. · Zbl 0876.14007 · doi:10.2748/tmj/1178225336
[7] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory (Baltimore, MD, 1989), 191–224. · Zbl 0776.14004
[8] A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), 301–337. · Zbl 0834.14010 · doi:10.1215/S0012-7094-93-07211-0
[9] A. Mokrane, Cohomologie cristalline des variétés ouvertes, Maghreb Math. Rev. 2 (1993), 161–175.
[10] A. Ogus, Logarithmic de Rham cohomology, · Zbl 0757.14014
[11] A. Ogus, \(F\)-crystals on schemes with constant log structure. Special issue in honour of Frans Oort, Compositio Math. 97 (1995), 187–225. · Zbl 0849.14008
[12] A. Shiho, Crystalline fundamental groups. II. Log convergent and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1–163. · Zbl 1057.14025
[13] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1976), 229–257. · Zbl 0303.14002 · doi:10.1007/BF01403146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.