×

On a localisation sequence for the K-theory of skew power series rings. (English) Zbl 1270.16035

Let \(B=A[[t;\sigma,\delta]]\) be a skew power series ring and assume that \(\sigma\) extends to an inner automorphism of \(B\). In this paper under review, the author exploits an observation first made by P. Schneider and O. Venjakob [J. Pure Appl. Algebra 204, No. 2, 349-367 (2006; Zbl 1143.16038)], namely the existence of a short exact sequence \[ 0\to B\widehat\otimes_AM\to B\widehat\otimes_AM\to M\to 0 \] for a pseudocompact \(B\)-module \(M\). This was used – first in the context of non-commutative Iwasawa theory by D. Burns [Publ. Res. Inst. Math. Sci. 45, No. 1, 75-87 (2009; Zbl 1225.11137)], then in general by P. Schneider and O. Venjakob [Am. J. Math. 132, No. 1, 1-36 (2010; Zbl 1191.16041)] – to construct a natural splitting of the boundary map \[ K_1(B_S)@>\partial_0>>K_0(B,B_S) \] in the K-theory localisation sequence of a regular Noetherian skew power series ring \(B\) and its localisation \(B_S\) with respect to a certain left denominator set \(S\).
In order to generalize this result, the author shows that by an application of Waldhausen’s additivity theorem [F. Waldhausen, Lect. Notes Math. 1126, 318-419 (1985; Zbl 0579.18006)] to the above exact sequence and by a well-known result in homotopy theory one obtains a natural splitting of the boundary map \(\partial_n\) for every \(n\). Using Waldhausen’s construction of K-theory for arbitrary Waldhausen categories also helps us to extend this result to non-regular skew power series and even to situations where no suitable left denominator set \(S\) is known to exist.
The author applies his result to the area of non-commutative Iwasawa theory. Let \(H\) be a \(p\)-adic Lie group and \(G\) a semi-direct product of \(H\) and \(\mathbb Z_p\). Fix a topological generator \(\gamma\) of \(\mathbb Z_p\). Then \(B=\mathbb Z_p[[G]]\) is a skew power series ring over \(A=\mathbb{Z}_p[[H]]\) with \(\sigma\) given by conjugation with \(\gamma\), \(t=\gamma-1\) and \(\delta=\sigma-\text{id}\). The set \(S\) is Venjakob’s canonical Ore set and the sequence \[ K_1(\mathbb Z_p[[G]])\to K_1(\mathbb Z_p[[G]]_S)@>\partial_0>>K_0(\mathbb Z_p[[G]],\mathbb Z_p[[G]]_S)\to 0 \] is used to formulate the main conjecture of non-commutative Iwasawa theory. By the author’s result, the leftmost map in this sequence is always injective and the splitting of \(\partial_0\) does exist even if \(G\) has \(p\)-torsion elements. It was part of the proof of the non-commutative main conjecture for totally real fields to verify this fact for Galois groups of admissible \(p\)-adic Lie extensions.
Reviewer: Wei Feng (Beijing)

MSC:

16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16E20 Grothendieck groups, \(K\)-theory, etc.
11R23 Iwasawa theory
19D50 Computations of higher \(K\)-theory of rings

References:

[1] J. reine angew. Math. 583 pp 193– (2005)
[2] DOI: 10.1016/j.jpaa.2005.05.007 · Zbl 1143.16038 · doi:10.1016/j.jpaa.2005.05.007
[3] Linear representations of finite groups 42 (1977)
[4] Bull. Soc. Math. France 90 pp 323– (1962)
[5] Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser. 2 pp 1– (2006)
[6] DOI: 10.1007/s10240-004-0029-3 · Zbl 1108.11081 · doi:10.1007/s10240-004-0029-3
[7] J. Inst. Math. Jussieu 5 pp 59– (2011)
[8] DOI: 10.2977/prims/1234361155 · Zbl 1225.11137 · doi:10.2977/prims/1234361155
[9] DOI: 10.1016/0021-8693(66)90034-2 · Zbl 0146.04702 · doi:10.1016/0021-8693(66)90034-2
[10] Topology and Geometry 139 (1993)
[11] Commutative Algebra (1989) · Zbl 0704.13001
[12] DOI: 10.1353/ajm.0.0089 · Zbl 1191.16041 · doi:10.1353/ajm.0.0089
[13] p-adic Lie groups, Grundlehren der Mathematischen Wissenschaften 344 (2011) · Zbl 1223.22008
[14] Topologische und vollständige Schiefmonoidringe lokal proendlicher, eigentlicher Monoide (2011)
[15] DOI: 10.1007/s00229-002-0306-8 · Zbl 1014.11066 · doi:10.1007/s00229-002-0306-8
[16] Cohomology of Number Fields 323 (2000) · Zbl 0948.11001
[17] DOI: 10.1016/j.aim.2007.05.008 · Zbl 1125.19001 · doi:10.1016/j.aim.2007.05.008
[18] A first course in noncommutative rings 131 (1991) · Zbl 0728.16001
[19] London Math. Soc. Student Texts 61 (2004)
[20] DOI: 10.1090/conm/126/00513 · doi:10.1090/conm/126/00513
[21] Introduction to Cyclotomic Fields 83 (1997) · Zbl 0966.11047
[22] Topological Rings 178 (1993) · Zbl 0785.13008
[23] DOI: 10.1007/BFb0074449 · doi:10.1007/BFb0074449
[24] The Grothendieck Festschrift, Progr. Math. pp 247– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.