×

Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. (English) Zbl 1426.74013

Summary: In order to study the behavior of material under finite deformation at various strain rates, the responses of AZ31 Mg sheet are measured under uniaxial (tension and compression) and multiaxial (simple shear) loadings along rolling direction (RD), \(45^\circ \) to rolling direction (DD), \(90^\circ \) to rolling direction (TD), and normal to the sheet (ND) to large strains. The material exhibits positive strain rate sensitivity (SRS) at room and elevated temperatures; the SRS is more pronounced at high temperatures and lower strain rates. The \(r\)-value of the material under tensile loading at room temperatures is higher in TD at lower strain rate. Texture measurements on several failed specimens are reported under tension and simple shear after finite plastic deformation of about 20% equivalent strain. The as-received material exhibits a strong fiber with equal fractions of grains having the \(c\)-axis slightly tilted away from the sheet normal towards both +RD and - RD. Pole figures obtained after tensile loading along the rolling direction (RD) show that the texture of the material strengthens even at low strains, with \(c\)-axis perpendicular to the sheet plane and prism planes lining up in a majority of grains. However, the tensile loading axis along TD does not lead to similar texture strengthening; the \(c\)-axis distribution appears to be virtually unchanged from the virgin state. The pole figures obtained after in-plane compression along RD brings the \(c\)-axes of the grains parallel to the loading direction. The pole figures after simple shear loading show that the \(c\)-axis rotates to lie on the sheet plane consistent with a compression axis \(45^\circ \) away on the sheet plane.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74C20 Large-strain, rate-dependent theories of plasticity
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Abu-Farha, F. K.; Khraisheh, M. K.: Mechanical characteristics of superplastic deformation of AZ31 magnesium alloy, J. mater. Eng. perform. 16, 192-199 (2007)
[2] Aghion, E.; Bronfin, B.; Eliezer, D.: The role of the magnesium industry in protecting the environment, J. mater. Process. technol. 117, 381-385 (2001)
[3] Agnew, S. R.; Duygulu, Ö.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plasticity 21, 1161-1193 (2005) · Zbl 1154.74305 · doi:10.1016/j.ijplas.2004.05.018
[4] Agnew, S. R.; Yoo, M. H.; Tome, C. N.: Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing Li or Y, Acta mater. 49, 4277-4289 (2001)
[5] Agnew, S. R.; Tomé, C. N.; Brown, D. W.; Holden, T. M.; Vogel, S. C.: Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling, Scripta mater. 48, 1003-1008 (2003)
[6] Al-Samman, T.; Gottstein, G.: Dynamic recrystallization during high temperature deformation of magnesium, Mater. sci. Eng. A 490, 411-420 (2008)
[7] Backofen, W. A.; Avery, D. H.; Turner, J. R.: Superplasticity in al – zn alloy, Trans. am. Soc. metals, 980-990 (1964)
[8] Boger, R. K.; Wagoner, R. H.; Barlat, F.; Lee, M. G.; Chung, K.: Continuous, large strain, tension/compression testing of sheet material, Int. J. Plasticity 21, 2319-2343 (2005) · Zbl 1101.74300 · doi:10.1016/j.ijplas.2004.12.002
[9] Bouvier, S.; Gardey, B.; Haddadi, H.; Teodosiu, C.: Characterization of the strain-induced plastic anisotropy of rolled sheets by using sequences of simple shear and uniaxial tensile tests, J. mater. Process. technol. 174, 115-126 (2006)
[10] Bouvier, S.; Haddadi, H.; Levée, P.; Teodosiu, C.: Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains, J. mater. Process. technol. 172, 96-103 (2006)
[11] Brand, P. C.; Prask, H. J.; Herold, T. G-.: Residual stress measurements at the NIST reactor, Phys. B: condens. Matter 241 – 243, 1244-1245 (1997)
[12] Brown, D. W.; Agnew, S. R.; Bourke, M. A. M.; Holden, T. M.; Vogel, S. C.; Tomé, C. N.: Internal strain and texture evolution during deformation twinning in magnesium, Mater. sci. Eng. A 399, 1-12 (2005)
[13] Chino, Y.; Kimura, K.; Mabuchi, M.: Twinning behavior and deformation mechanisms of extruded AZ31 mg alloy, Mater. sci. Eng. A 486, 481-488 (2008)
[14] Choi, H. S-.; Shin, E. J.; Seong, B. S.: Simulation of deformation twins and deformation texture in an AZ31 mg alloy under uniaxial compression, Acta mater. 55, 4181-4192 (2007)
[15] Christian, J. W.; Mahajan, S.: Deformation twinning, Prog. mater. Sci. 39, 1-157 (1995)
[16] Del Valle, J. A.; Pérez-Prado, M. T.; Ruano, O. A.: Deformation mechanisms responsible for the high ductility in a mg AZ31 alloy analyzed by electron backscattered diffraction, Metall. mater. Trans. A 36, 1427-1438 (2005)
[17] Fjeldly, A.; Roven, H. J.; Rauch, E.: Shear deformation properties of extruded alznmg alloys, Scripta mater. 38, 709-714 (1998)
[18] Helis, L.; Okayasu, K.; Fukutomi, H.: Microstructure evolution and texture development during high-temperature uniaxial compression of magnesium alloy AZ31, Mater. sci. Eng. A 430, 98-103 (2006)
[19] Hilditch, T.; Atwell, D.; Easton, M.; Barnett, M.: Performance of wrought aluminium and magnesium alloy tubes in three-point bending, Mater. design 30, 2316-2322 (2009)
[20] Jain, A.; Agnew, S. R.: Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet, Mater. sci. Eng. A 462, 29-36 (2007)
[21] Jain, A.; Duygulu, O.; Brown, D. W.; Tomé, C. N.; Agnew, S. R.: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet, Mater. sci. Eng. A 486, 545-555 (2008)
[22] Jiang, L.; Jonas, J.; Mishra, R.; Luo, A.; Sachdev, A.; Godet, S.: Twinning and texture development in two mg alloys subjected to loading along three different strain paths, Acta mater. 55, 3899-3910 (2007)
[23] Jiang, J.; Godfrey, A.; Liu, W.; Liu, Q.: Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31, Mater. sci. Eng. A 483 – 484, 576-579 (2008)
[24] Khan, A. S.; Kazmi, R.; Pandey, A.; Stoughton, T.: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part I: a very low work hardening aluminum alloy: al-6061 – T 6511, Int. J. Plasticity 25, 1611-1625 (2009)
[25] Khan, A. S.; Pandey, A.; Stoughton, T.: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: a very high work hardening aluminum alloy (annealed 1100 al), Int. J. Plasticity 26, 1421-1431 (2010) · Zbl 1427.74002
[26] Khan, A. S.; Pandey, A.; Stoughton, T.: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation, part-III: yield surface in tension- tension stress space (Al 6061-T 6511 & annealed 1100 al), Int. J. Plasticity 26, 1432-1441 (2010) · Zbl 1427.74003
[27] Khan, A. S.; Suh, Y. S.; Kazmi, R.: Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int. J. Plasticity 20, 2233-2248 (2004) · Zbl 1135.74300 · doi:10.1016/j.ijplas.2003.06.005
[28] Liu, Y.; Wu, X.: An electron-backscattered diffraction study of the texture evolution in a coarse-grained AZ31 magnesium alloy deformed in tension at elevated temperatures, Metall. mater. Trans. A 37, 7-17 (2006)
[29] Lopes, A. B.; Barlat, F.; Gracio, J. J.; Duarte, J. F.; Rauch, E. F.: Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear, Int. J. Plasticity 19, 1-22 (2003) · Zbl 1032.74503 · doi:10.1016/S0749-6419(01)00016-X
[30] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plasticity 23, 44-86 (2007) · Zbl 1331.74007
[31] Mahajan, S.; Williams, D. F.: Deformation twinning in metals and alloys, Int. metall. Rev. 18, 43-61 (1973)
[32] Maksoud, I. A.; Ahmed, H.; Rödel, J.: Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy, Mater. sci. Eng. A 504, 40-48 (2009)
[33] Matthies, S.; Wenk, H. -R.: Optimization of texture measurements by pole figure coverage with hexagonal grids, Phys. status solidi A 133, 253-257 (1992)
[34] Muránsky, O.; Carr, D. G.; Šittner, P.; Oliver, E. C.: In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy, Int. J. Plasticity 25, 1107-1127 (2009) · Zbl 1171.74302 · doi:10.1016/j.ijplas.2008.08.002
[35] Nave, M. D.; Barnett, M. R.: Microstructures and textures of pure magnesium deformed in plane-strain compression, Scripta mater. 51, 881-885 (2004)
[36] Nobre, J. P.; Noster, U.; Kommeier, M.; Dias, A. M.; Scholtes, B.: Deformation asymmetry of AZ31 wrought magnesium alloy, Key eng. Mater., 230-232 (2002)
[37] Proust, G.; Tomé, C. N.; Jain, A.; Agnew, S. R.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31, Int. J. Plasticity 25, 861-880 (2009) · Zbl 1186.74006 · doi:10.1016/j.ijplas.2008.05.005
[38] Rauch, E. F.: Plastic anisotropy of sheet metals by simple shear tests, Mater. sci. Eng. A 241, 179-183 (1998)
[39] Reed-Hill, R. E.: Role of deformation twinning in determining the mechanical properties of metals: the inhomogeneity of plastic deformation, Am. soc. Metals 285, 311 (1973)
[40] Reed-Hill, R. E.; Abbaschian, R.: Physical metallurgy principles, (1994)
[41] Staroselsky, A.; Anand, L.: A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plasticity 19, 1843-1864 (2003) · Zbl 1098.74546 · doi:10.1016/S0749-6419(03)00039-1
[42] Styczynski, A.; Hartig, C.; Bohlen, J.; Letzig, D.: Cold rolling textures in AZ31 wrought magnesium alloy, Scripta mater. 50, 943-947 (2004)
[43] Thuillier, S.; Manach, P. Y.: Comparison of the work-hardening of metallic sheets using tensile and shear strain paths, Int. J. Plasticity 25, 733-751 (2009) · Zbl 1419.74091
[44] Tozawa, Y.: Plastic deformation behavior under conditions of combined stress, Mechanics of sheet metal forming (1978)
[45] Tucker, M. T.; Horstemeyer, M. F.; Gullett, P. M.; Kadiri, H. El.; Whittington, W. R.: Anisotropic effects on the strain rate dependence of a wrought magnesium alloy, Scripta mater. 60, 182-185 (2009)
[46] Ulacia, I.; Dudamell, N. V.; Gálvez, F.; Yi, S.; Pérez-Prado, M. T.; Hurtado, I.: Mechanical behavior and microstructural evolution of a mg AZ31 sheet at dynamic strain rates, Acta mater. 58, 2988-2998 (2010)
[47] Wack, B.; Tourabi, A.: Cyclic simple shear of metallic sheets: application to aluminium lithium alloy, J. mater. Sci. 28, 4735-4743 (1993)
[48] Watanabe, H.; Tsutsui, H.; Mukai, T.; Kohzu, M.; Tanabe, S.; Higashi, K.: Deformation mechanism in a coarse-grained mg – al – zn alloy at elevated temperatures, Int. J. Plasticity 17, 387-397 (2001)
[49] Yi, S. -B.; Davies, C. H. J.; Brokmeier, H. -G.; Bolmaro, R. E.; Kainer, K. U.; Homeyer, J.: Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta mater. 54, 549-562 (2006)
[50] Yukutake, E.; Kaneko, J.; Sugamata, M.: Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates, Mater. trans. 44, 452-457 (2003)
[51] Zhang, E.; Yin, D.; Xu, L.; Yang, L.; Yang, K.: Microstructure, mechanical and corrosion properties and biocompatibility of mg – zn – mn alloys for biomedical application, Mater. sci. Eng. C 29, 987-993 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.