×

Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. (English) Zbl 1186.74006

Summary: Hexagonal materials deform plastically by activating diverse slip and twinning modes. The activation of such modes depends on their relative critical stresses, and the orientation of the crystals with respect to the loading direction. To be reliable, a constitutive description of these materials has to account for texture evolution associated with reorientations due to both dislocation slip and twinning, and for the effect of the twin boundaries as barriers to dislocation propagation. We extend a previously introduced twin model, which accounts explicitly for the composite character of the grain formed by a matrix with embedded twin lamellae, to describe the influence of twinning on the mechanical behavior of the material. The role of the twins as barriers to dislocations is explicitly incorporated into the hardening description of slip deformation via a directional Hall-Petch mechanism. We introduce here an improved hardening law for twinning, which discriminates for specific twin/dislocation interactions, and a detwinning mechanism. We apply this model to the interpretation of compression and tension experiments done in rolled magnesium alloy AZ31B at room temperature. Particularly challenging cases involve strain-path changes that force strong interactions between twinning, detwinning, and slip mechanisms.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74E15 Crystalline structure
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI

References:

[1] Agnew, S. R.; Duygulu, O.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International journal of plasticity 21, No. 6, 1161 (2005) · Zbl 1154.74305 · doi:10.1016/j.ijplas.2004.05.018
[2] Agnew, S. R.; Brown, D. W.; Tomé, C. N.: Validating a polycrystal model for the elasto-plastic response of magnesium alloy AZ31 using in-situ neutron diffraction, Acta matererialia 54, No. 18, 4841-4852 (2006)
[3] Agnew, S. R.; Tomé, C. N.; Brown, D. W.; Holden, T. M.; Vogel, S. C.: Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling, Scripta materialia 48, No. 8, 1003 (2003)
[4] Agnew, S. R.; Yoo, M. H.; Tomé, C. N.: Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing Li or Y, Acta materialia 49, No. 20, 4277 (2001)
[5] Ando, S.; Tonda, H.: Non-basal slips in magnesium and magnesium – lithium alloy single crystals, Materials science forum 350-351, 43-48 (2000)
[6] , ASM speciality handbook (1999)
[7] Barnett, M. R.: Twinning and the ductility of magnesium alloys. Part I: Tension twins, Materials science and engineering A, structural materials 464, No. 1 – 2, 1-7 (2007)
[8] Barnett, M. R.: Twinning and the ductility of magnesium alloys. Part II. Contraction twins, Materials science and engineering A, structural materials 464, No. 1 – 2, 8 (2007)
[9] Barnett, M. R.; Keshavarz, Z.; Ma, X.: A semianalytical Sachs model for the flow stress of a magnesium alloy, Metallurgical and materials transactions A, physical metallurgy and materials science 37A, No. 7, 2283 (2006)
[10] Basinski, Z. S.; Szczerba, M. S.; Niewczas, M.; Embury, J. D.; Basinski, S. J.: Transformation of slip dislocations during twinning of copper – aluminum alloy crystals, Revue de metallurgie cahiers d’informations techniques 94, No. 9, 1037-1044 (1997)
[11] Beyerlein, I. J.; Tomé, C. N.: Modeling transients in the mechanical response of copper due to strain path changes, International journal of plasticity 23, No. 4, 640-664 (2007) · Zbl 1110.74018 · doi:10.1016/j.ijplas.2006.08.001
[12] Brown, D. W.; Jain, A.; Agnew, S. R.; Clausen, B.: Twinning and detwinning during cyclic deformation of mg alloy AZ31B, Materials science forum 539 – 543, No. 4, 3407 (2007)
[13] Caceres, C. H.; Sumitomo, T.; Veidt, M.: Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading – unloading, Acta materialia 51, 6211-6218 (2003)
[14] Capolungo, L., Beyerlein, I.J., in press. Nucleation and stability of twins in hcp metals. Physical Review B.
[15] Cherkaoui, M.: Constitutive equations for twinning and slip in low-stacking-fault-energy metals: a crystal plasticity-type model for moderate strains, Philosophical magazine 83, No. 31-34, 3945-3958 (2003)
[16] Cherkaoui, M.; Berveiller, M.; Sabar, H.: Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International journal of plasticity 14, No. 7, 597-626 (1998) · Zbl 0969.74048 · doi:10.1016/S0749-6419(99)80000-X
[17] Chino, Y.; Kimura, K.; Hakamada, M.; Mabuchi, M.: Mechanical anisotropy due to twinning in an extruded AZ31 mg alloy, Materials science and engineering A, structural materials 485, 311-317 (2008)
[18] Christian, J. W.; Mahajan, S.: Deformation twinning, Progress in materials science 39, No. 1 – 2, 1-157 (1995)
[19] Clausen, B.; Tomé, C. N.; Brown, D. W.; Agnew, S. R.: Reorientation and stress relaxation due to twinning: modeling and experimental characterization for mg, Acta materialia 56, No. 11, 2456-2468 (2008)
[20] Jain, A.; Agnew, S. R.: Effect of twinning on the mechanical behavior of a magnesium alloy sheet during strain path changes, Magnesium technology 2006, 219 (2006)
[21] Jain, A.; Agnew, S. R.: Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet, Materials science and engineering A, structural materials 462, No. 1 – 2, 29 (2007)
[22] Jain, A.; Duygulu, O.; Brown, D. W.; Tomé, C. N.; Agnew, S. R.: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet, Materials science and engineering A 486, No. 1 – 2, 311-317 (2008)
[23] Jiang, L.; Jonas, J. J.; Luo, A. A.; Sachdev, A. K.; Godet, S.: Twinning-induced softening in polycrystalline AM30 mg alloy at moderate temperatures, Scripta materialia 54, 771-775 (2006)
[24] Jiang, L.; Jonas, J. J.; Mishra, R. K.; Luo, A. A.; Sachdev, A. K.; Godet, S.: Twinning and texture development in two mg alloys subjected to loading along three different strain paths, Acta materialia 55, No. 11, 3899 (2007)
[25] Kalidindi, S. R.: Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals, International journal of plasticity 17, No. 6, 837-860 (2001) · Zbl 1147.74312 · doi:10.1016/S0749-6419(00)00071-1
[26] Karaman, I.; Sehitoglu, H.; Beaudoin, A. J.; Chumlyakov, Y. I.; Maier, H. J.; Tomé, C. N.: Modeling the deformation behavior of hadfield steel single and polycrystals due to twinning and slip, Acta materialia 48, 2031-2047 (2000)
[27] Kaschner, G. C.; Bingert, J. F.; Liu, C.; Lovato, M. L.; Maudlin, P. J.; Stout, M. G.; Tomé, C. N.: Mechanical response of zirconium – II. Experimental and finite element analysis of bent beams, Acta materialia 49, 3097-3108 (2001)
[28] Kelley, E. W.; Hosford, W. F. J.: The deformation characteristics of textured magnesium, Transactions of the metallurgical society of AIME 242, 654-660 (1968)
[29] Kleiner, S.; Uggowitzer, P. J.: Mechanical anisotropy of extruded mg – 6% al – 1% zn alloy, Materials science and engineering A, structural materials 379, No. 1 – 2, 258 (2004)
[30] Klimanek, P.; Potzsch, A.: Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates, Materials science and engineering A, structural materials 324, No. 1 – 2, 145 (2002)
[31] Koike, J.: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline mg alloys at room temperature, Metallurgical and materials transactions A 36A, 1689-1696 (2005)
[32] Kubler, R.; Berveiller, M.; Cherkaoui, M.; Inal, K.: Transformation textures in unstable austenitic steel, Journal of engineering materials and technology 125, 12-17 (2003)
[33] Lebensohn, R. A.; Tomé, C. N.: Self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metallurgica et materialia 41, No. 9, 2611-2624 (1993)
[34] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, International journal of plasticity 23, No. 1, 44 (2007) · Zbl 1331.74007
[35] Mann, G. E.; Sumitomo, T.; Caceres, C. H.; Griffiths, J. R.: Reversible plastic strain during cyclic loading-unloading of mg and mg – zn alloys, Materials science and engineering A, structural materials 456, No. 1 – 2, 138 (2007)
[36] Mendelson, S.: Dislocation dissociations in hcp metals, Journal of applied physics 41, No. 2, 1893-1910 (1970)
[37] Morozumi, S.; Kikuchi, M.; Yoshinaga, H.: Electron microscope observation in and around (1102) twins in magnesium, Transactions of the Japan institute of metals 17, No. 3, 158-164 (1976)
[38] Obara, T.; Yoshinga, H.; Morozumi, S.: {11 - 22}\(\langle - 1 - 123\rangle \) slip system in magnesium, Acta metallurgica 21, 845-853 (1973)
[39] Philippe, M. J.; Serghat, M.; Van Houtte, P.; Esling, C.: Modelling of texture evolution for materials of hexagonal symmetry – II. Application to zirconium and titanium \(\alpha \) or near \(\alpha \) alloys, Acta metallurgica et materialia 43, No. 4, 1619-1630 (1995)
[40] Pond, R. C.; Serra, A.; Bacon, D. J.: Dislocations in interfaces in the hcp metals – II. Mechanisms of defect mobility under stress, Acta materialia 47, No. 5, 1441-1453 (1999)
[41] Proust, G.; Tomé, C. N.; Kaschner, G. C.: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Acta materialia 55, 2137-2148 (2007)
[42] Salem, A. A.; Kalidindi, S. R.; Doherty, R. D.: Microstructure evolution and strain hardening mechanisms in titanium, Acta materialia (2003)
[43] Salem, A. A.; Kalidindi, S. R.; Semiatin, S. L.: Strain hardening due to deformation twinning in \(\alpha \)-titanium: constitutive relations and crystal-plasticity modeling, Acta materialia 53, 3495-3502 (2005)
[44] Schmid, E.; Boas, W.: Plasticity of crystals, (1968)
[45] Serra, A.; Bacon, D. J.: Computer simulation of screw dislocation interactions with twin boundaries in hcp metals, Acta metallurgica et materialia 43, No. 12, 4465-4481 (1995)
[46] Serra, A.; Bacon, D. J.: A new model for {10 - 12} twin growth in hcp metals, Philosophical magazine A 73, No. 2, 333-343 (1996)
[47] Serra, A.; Bacon, D. J.; Pond, R. C.: Twins as barriers to basal slip in hexagonal-close-packed metals, Metallurgical and materials transactions A 33, 809-812 (2002)
[48] Staroselsky, A.; Anand, L.: A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B, International journal of plasticity 19, No. 10, 1843 (2003) · Zbl 1098.74546 · doi:10.1016/S0749-6419(03)00039-1
[49] Stohr, J. -F.; Poirier, J. -P.: Etude en microscopie electronique du glissement pyramidal {11 - 22}\(\langle 11 - 23\rangle \) dans le magnesium, Philosophical magazine 25, No. 6, 1313-1329 (1972)
[50] Tomé, C. N.; Kaschner, G. C.: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Materials science forum, 1001-1497 (2005)
[51] Tomé, C. N.; Lebensohn, R. A.; Kocks, U. F.: A model for texture development dominated by deformation twinning: application to zirconium alloys, Acta metallurgica et materialia 39, No. 11, 2667-2680 (1991)
[52] Tomé, C. N.; Maudlin, P. J.; Lebensohn, R. A.; Kaschner, G. C.: Mechanical response of zirconium – I. Derivation of a polycrystal constitutive law and finite element analysis, Acta materialia 49, No. 15, 3085-3096 (2001)
[53] Van Houtte, P.: Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta metallurgica et materialia 26, No. 4, 591-604 (1978)
[54] Wang, Y. N.; Huang, J. C.: The role of twinning and untwinning in yielding behavior in hot-extruded mg – al – zn alloy, Acta materialia 55, No. 3, 897 (2007)
[55] Ward-Flynn, P.; Mote, J.; Dorn, J. E.: On the thermally activated mechanism of prismatic slip in magnesium single crystals, trans, Tms-aime 221, 1148-1154 (1961)
[56] Wu, L., Agnew, S.R., Brown, D.W., Stoica, G.M., Clausen, B., Jain, A., Fielden, D.E., Liaw, P.K., in press. Internal-stress relaxation and load redistribution during the twinning – detwinning dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Materialia.
[57] Wu, X.; Kalidindi, S. R.; Necker, C.; Salem, A. A.: Prediction of crystallographic texture evolution and anisotropic stress – strain curves during large plastic strains in high purity a-titanium using a Taylor-type crystal plasticity model, Acta materialia 55, 423-432 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.