×

An experimental study of cyclic deformation of extruded AZ61A magnesium alloy. (English) Zbl 1426.74026

Summary: Thin-walled tubular specimens were employed to study the cyclic deformation of extruded AZ61A magnesium alloy. Experiments were conducted under fully reversed strain-controlled tension-compression, torsion, and combined axial-torsion in ambient air. Mechanical twinning was found to significantly influence the inelastic deformation of the material. Cyclic hardening was observed at all the strain amplitudes under investigation. For tension-compression at strain amplitudes higher than 0.5%, the stress-strain hysteresis loop was asymmetric with a positive mean stress. This was associated with mechanical twinning in the compression phase and detwinning in the subsequent tension phase. Under cyclic torsion, the stress-strain hysteresis loops were symmetric although mechanical twinning was observed at high shear strain amplitudes. When the material was subjected to combined axial-torsion loading, the alternative occurrence of twinning and detwinning processes under axial stress resulted in asymmetric shear stress-shear strain hysteresis loops. Nonproportional hardening was not observed due to limited number of slip systems and the formation of mechanical twins. Microstructures after the stabilization of cyclic deformation were observed and the dominant mechanisms governing cyclic deformation were discussed. Existing cyclic plasticity models were discussed in light of their capabilities for modeling the observed cyclic deformation of the magnesium alloy.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74C99 Plastic materials, materials of stress-rate and internal-variable type

Software:

TWINLAW
Full Text: DOI

References:

[1] Agnew, S. R.; Duygulu, O.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plasticity 21, 1161-1193 (2005) · Zbl 1154.74305 · doi:10.1016/j.ijplas.2004.05.018
[2] Agnew, S. R.; Yoo, M. H.; Tome, C. N.: Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing Li or Y, Acta mater. 49, 4277-4289 (2001)
[3] Agnew, S. R.; Brown, D. W.; Tome, C. N.: Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction, Acta mater. 54, 4841-4852 (2006)
[4] Ando, S.; Tonda, H.: Non-basal slips in magnesium and magnesium – lithium alloy single crystals, Mater. sci. Forum 350 – 351, 43-48 (2000)
[5] Ando, S.; Ikejiri, Y.; Iida, N.; Tsushida, M.; Tonda, H.: Orientation dependence of fatigue crack propagation in magnesium single crystals, J. jpn. Inst. met. 70, 634-637 (2006)
[6] Armstrong, R. W.; Horne, G. T.: Fatigue behaviour in shear of oriented magnesium single crystals, J. jpn. Inst. met. 91, 311-315 (1963)
[7] Asaro, R. J.; Needleman, A.: Texture development and strain hardening in rate dependent polycrystals, Acta metallurgica 33, 923-953 (1985)
[8] Barnett, M. R.; Keshavarz, Z.; Beer, A. G.; Ma, X.: Non-schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta mater. 56, 5-15 (2008)
[9] Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.: Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy, Metall. mater. Trans. A 39, 3014-3026 (2008)
[10] Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.: Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Int. J. Fatigue 31, 726-735 (2009)
[11] Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.: Effect of strain ratio and strain rate on low cyclic fatigue behavior of az31wrought magnesium alloy, Mater. sci. Eng. A 517, 334-343 (2009)
[12] Bentachfine, S.; Pluvinage, G.: Biaxial low cycle fatigue under non-proportional loading of a magnesium – lithium alloy, Eng. fract. Mech. 54, 513-522 (1996)
[13] Bettles, C. J.; Gibson, M. A.: Current wrought magnesium alloys: strengths and weaknesses, Jom 57, No. 5, 46-49 (2005)
[14] Brown, D. W.; Agnew, S. R.; Bourke, M. A. M.; Holden, T. M.; Vogel, S. C.; Tome, C. N.: Internal strain and texture evolution during deformation twinning in magnesium, Mater. sci. Eng. A 399, 1-12 (2005)
[15] Brown, D. W.; Jain, A.; Agnew, S. R.; Clausen, B.: Twinning and detwinning during cyclic deformation of mg alloy AZ31B, Mater. sci. Forum 539 – 543, 3407-3413 (2007)
[16] Burke, E. C.; Hibbard, W. R.: Plastic deformation of magnesium single crystals, Trans. am. Inst. MIN metall. Eng. 194, 295-303 (1952)
[17] Chamos, A. N.; Pantelakis, Sp.G.; Haidemenopoulos, G. N.; Kamoutsi, E.: Tensile and fatigue behavior of wrought magnesium alloys AZ31 and AZ61, Fatigue fract. Eng. mater. Struct. 31, 812-821 (2008)
[18] Chen, L.; Wang, C.; Wu, W.; Liu, Z.; Stoica, G. M.; Wu, L.; Liaw, P. K.: Low-cycle fatigue behavior of an extruded AM50 magnesium alloy, Metall. mater. Trans. A 38, 2235-2241 (2007)
[19] Choi, S. -H.; Kim, D. H.; Park, S. S.; You, B. S.: Simulation of stress concentration in mg alloy using the crystal plasticity finite element method, Acta mater. 58, 320-329 (2010)
[20] Couret, A.; Caillard, D.: An in-situ study of prismatic glide in magnesium, Acta metallurgica 33, 1447-1454 (1985)
[21] Eliezer, D.; Aghion, E.; Froes, F. H.: Magnesium science, technology and applications, Adv. perform. Mater. 5, 201-212 (1998)
[22] Fan, C. L.; Chen, D. L.; Luo, Alan A.: Dependence of the distribution of deformation twins on strain amplitudes in an extruded magnesium alloy after cyclic deformation, Mater. sci. Eng. A 519, 38-45 (2009)
[23] Gharghouri, M.; Weatherly, G.; Embury, J.; Root, J.: Study of mechanical properties of mg-7.7at.%Al by in-situ neutron diffraction, Philos. mag. A 79, 1671-1695 (1999)
[24] Graff, S.; Brocks, W.; Steglich, D.: Yielding of magnesium: from single crystal to polycrystalline aggregates, Int. J. Plasticity 23, 1957-1978 (2007) · Zbl 1129.74011 · doi:10.1016/j.ijplas.2007.07.009
[25] Gurtin, M. E.: An introduction to continuum mechanics, (1981) · Zbl 0559.73001
[26] Hasegawa, S.; Tsuchida, Y.; Yano, H.; Matsui, M.: Evaluation of low cycle fatigue life in AZ31 magnesium alloy, Int. J. Fatigue 29, 1839-1845 (2007) · Zbl 1140.74320 · doi:10.1016/j.ijfatigue.2006.12.003
[27] Hauser, F. E.; Landon, P. R.; Dorn, J. E.: Deformation and fracture mechanisms of polycrystalline magnesium at low temperatures, Trans. ASM 48, 986-1002 (1956)
[28] Jiang, Y.; Kurath, P.: Nonproportional cyclic deformation: critical experiments and analytical modeling, Int. J. Plasticity 13, 743-763 (1997) · Zbl 0907.73026 · doi:10.1016/S0749-6419(97)00030-2
[29] Jiang, L.; Jonas, J. J.; Luo, A. A.; Sachdev, A. K.; Godet, S.: Influence of 10 – 12 extension twinning on the flow behavior of AZ31 mg alloy, Mater. sci. Eng. A 445 – 446, 302-309 (2007)
[30] Jiang, L.; Jonas, J. J.; Mishra, R. K.; Luo, A. A.; Sachdev, A. K.; Godet, S.: Twinning and texture development in two mg alloys subjected to loading along three different strain paths, Acta mater. 55, 3899-3910 (2007)
[31] Kalidindi, S. R.: Incorporation of deformation twinning in crystal plasticity models, J. mech. Phys. solids 46, 267-271 (1998) · Zbl 0945.74014 · doi:10.1016/S0022-5096(97)00051-3
[32] Kelly, E. W.; Hosford, W. F.: Plane-strain compression of magnesium and magnesium alloy crystals, Trans. metall. Soc. AIME 242, 5-13 (1968)
[33] Keshavarz, Z.; Barnett, M. R.: EBSD analysis of deformation modes in mg – 3Al – 1Zn, Scripta mater. 55, 915-918 (2006)
[34] Kleiner, S.; Uggowitzer, P. J.: Mechanical anisotropy of extruded mg – 6%Al – 1%Zn alloy, Mater. sci. Eng. A 379, 258-263 (2004)
[35] Koike, J.; Ohyyama, R.: Geometrical criterion for the activation of prismatic slip in AZ61A mg alloy sheets deformed at toom temperature, Acta mater. 53, 1963-1972 (2005)
[36] Koike, J.: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline mg alloys at room temperature, Metall. mater. Trans. A 36, 1689-1696 (2005)
[37] Kwadjo, R.; Brown, L. M.: Cyclic hardening of magnesium single crystals, Acta metallurgica 26, 1117-1132 (1978)
[38] Lebensohn, R. A.; Tomé, C. N.: A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals, Mater. sci. Eng. A 175, 71-82 (1994)
[39] Lee, M. G.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.: Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plasticity 24, 545-582 (2008) · Zbl 1214.74004 · doi:10.1016/j.ijplas.2007.05.004
[40] Lee, M. G.; Kim, S. J.; Wagoner, R. H.; Chung, K.; Kim, H. Y.: Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloys sheets: application to sheet springback, Int. J. Plasticity 25, 70-104 (2009) · Zbl 1277.74014
[41] Lee, M. G.; Kim, J. H.; Chung, K.; Kim, S. J.; Wagoner, R. H.; Kim, H. Y.: Analytical springback model for lightweight hexagonal close-packed sheet metal, Int. J. Plasticity 25, 399-419 (2009) · Zbl 1277.74006
[42] Li, M.; Lou, X. Y.; Kim, J. H.; Wagoner, R. H.: An efficient constitutive model for room-temperature, low-rate plasticity of annealed mg AZ31B sheet, Int. J. Plasticity 26, 820-858 (2010) · Zbl 1426.74080
[43] Li, Q.; Yu, Q.; Zhang, J.; Jiang, Y.: Effect of strain amplitude on tension – compression fatigue behavior of extruded mg6al1zna magnesium alloy, Scripta mater. 62, 778-781 (2010)
[44] Lin, X. Z.; Chen, D. L.: Strain controlled cyclic deformation behavior of an extruded magnesium alloy, Mater. sci. Eng. A 496, 106-113 (2008)
[45] Lou, X. Y.; Li, M.; Boger, R. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plasticity 23, 44-86 (2007) · Zbl 1331.74007
[46] Matsuzuki, M.; Horibe, S.: Analysis of fatigue damage process in magnesium alloy AZ31, Mater. sci. Eng. A 504, 169-174 (2009)
[47] Muránsky, O.; Carr, D. G.; Šittner, P. E.; Oliver, C.: In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy, Int. J. Plasticity 25, 1107-1127 (2009) · Zbl 1171.74302 · doi:10.1016/j.ijplas.2008.08.002
[48] Myagchilov, S.; Dawson, P. R.: Evolution of texture in aggregates of crystals exhibiting both slip and twinning, Model. simul. Mater. sci. Eng. 7, 975-1004 (1999)
[49] Obara, T.; Yoshinga, H.; Morozumi, S.: {112¯2}\(\langle 1\)¯1¯\(23\rangle \) slip system in magnesium, Acta metallurgica 21, 845-853 (1973)
[50] Ogarevic, V. V.; Stephens, R. I.: Fatigue of magnesium alloys, Annu. rev. Mater. sci. 20, 141-177 (1990)
[51] Partridge, P. G.: Irregular twin growth and contraction in hexagonal close packed metals, Acta metallurgica 13, 1329-1335 (1965)
[52] Partridge, P. G.: Slip band extrusion in fatigued close packed hexagonal metals, Acta metallurgica 13, 517-525 (1965)
[53] Partridge, P. G.: Cyclic twinning in fatigued close-packed hexagonal metals, Philos. mag. 12, 1043-1054 (1965)
[54] Partridge, P. G.: The crystallography and deformation modes of HCP metals, Metall. rev. 12, No. 118, 169-194 (1967)
[55] Peirce, D.; Asaro, R. J.; Needleman, A.: Material rate dependent and localized deformation in crystalline solids, Acta metallurgica 31, 1951-1976 (1983)
[56] Potzies, C.; Kainer, K. U.: Fatigue of magnesium alloys, Adv. eng. Mater. 6, 281-289 (2004)
[57] Prakash, A.; Weygand, S. M.; Reidel, H.: Modeling the evolution of texture and grain shape in mg alloy AZ31 using the crystal plasticity finite element method, Comput. mater. Sci. 45, 744-750 (2009)
[58] Proust, G.; Tome, C. N.; Jain, A.; Agnew, S. R.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31, Int. J. Plasticity 25, 861-880 (2009) · Zbl 1186.74006 · doi:10.1016/j.ijplas.2008.05.005
[59] Reed-Hill, R. E.; Robertson, W. D.: Additional modes of deformation twinning in magnesium, Acta metallurgica 5, 717-727 (1957)
[60] Reed-Hill, R. E.; Robertson, W. D.: Deformation of magnesium single crystals by nonbasal slip, Trans. am. Inst. MIN metall. Eng. 209, 496-502 (1957)
[61] Reed-Hill, R. E.; Robertson, W. D.: The crystallographic characteristics of fracture in magnesium single crystals, Acta metallurgica 5, 728-737 (1957)
[62] Reed-Hill, R. E.; Robertson, W. D.: Pyramidal slip in magnesium, Trans. am. Inst. MIN metall. Eng. 212, 256-259 (1958)
[63] Reed-Hill, R. E.: Deformation twinningtms-AIME conference, (1964)
[64] Roberts, C. S.: Magnesium and its alloys, (1960)
[65] Sajuri, Z. B.; Miyashita, Y.; Hosokai, Y.; Mutoh, Y.: Effects of mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys, Int. J. Mech. sci. 48, 198-209 (2006) · Zbl 1331.74161
[66] Salem, A. A.; Kalidindi, S. R.; Semiatin, S. L.: Strain hardening due to deformation twinning in \(\alpha \)-titanium: constitutive relations and crystal-plasticity modeling, Acta mater. 53, 3495-3502 (2005)
[67] Schmid, E.; Boas, W.: Plasticity of crystals: with special reference to metals, (1935)
[68] Shih, T. S.; Liu, W. S.; Chen, Y. J.: Fatigue of as-extruded AZ61A magnesium alloy, Mater. sci. Eng. A 325, 152-162 (2002)
[69] Staroselsky, A.; Anand, L.: A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plasticity 19, 1843-1864 (2003) · Zbl 1098.74546 · doi:10.1016/S0749-6419(03)00039-1
[70] Stevenson, R.; Vander Sande, J. B.: The cyclic deformation of magnesium single crystals, Acta metallurgica 22, 1079-1086 (1974)
[71] Stohr, J. F.; Poirier, J. P.: Etude en microscopie electronique du glissement pyramidal {112¯2}{1¯1¯23} dans le magnesium, Philos. mag. 25, 1313-1329 (1972)
[72] Styczynski, A.; Hartig, Ch.; Bohlen, J.; Letzig, D.: Cold rolling textures in AZ31 wrought magnesium alloy, Scripta mater. 50, 943-947 (2004)
[73] Tang, W.; Zhang, S.; Peng, Y.; Li, D.: Simulation of magnesium alloy az31sheet during cylindrical cup drawing with rate independent crystal plasticity finite element method, Comput. mater. Sci. 46, 393-399 (2009)
[74] Tegart, W. J. Mcg.: Independent slip systems and ductility of hexagonal polycrystals, Philos. mag. 9, 339-341 (1964)
[75] Tomé, C. N.; Lebensohn, R. A.; Kocks, U. F.: A model for texture development dominated by deformation twinning: application to zirconium alloys, Acta metall. Mater. 39, 2667-2680 (1991)
[76] Van-Houtte, P.: Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta metallurgica 26, 591-604 (1978)
[77] Walde, T.; Riedel, H.: Simulation of earing during deep drawing of magnesium alloy AZ31, Acta mater. 55, 867-874 (2007)
[78] Wang, Y. N.; Huang, J. C.: The role of twinning and untwinning in yielding behavior in hot-extruded mg – al – zn alloy, Acta mater. 55, 897-905 (2007)
[79] Wu, X.; Kalidindi, S. R.; Necker, C.; Salem, A. A.: Prediction of crystallographic texture evolution and anisotropic stress – strain curves during large plastic strains in high purity-titanium using a Taylor-type crystal plasticity model, Acta mater. 55, 423-432 (2007)
[80] Wu, L.; Agnew, S. R.; Brown, D. W.; Stoica, G. M.; Clausen, B.; Jain, A.; Fielden, D. E.; Liaw, P. K.: Internal stress relaxation and load redistribution during the twinning – detwinning – dominated cyclic deformation of a wrought magnesium alloy ZK60A, Acta mater. 56, 3699-3707 (2008)
[81] Wu, L.; Jain, A.; Brown, D. W.; Stoica, G. M.; Agnew, S. R.; Clausen, B.; Fielden, D. E.; Liaw, P. K.: Twinning – detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy ZK60A, Acta mater. 56, 688-695 (2008)
[82] Yi, S. B.; Davies, C. H. J.; Brokmeier, H. -G.; Bolmaro, R. E.; Kainer, K. -U.; Homeyer, J.: Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta mater. 54, 549-562 (2006)
[83] Yin, S. M.; Yang, H. J.; Li, S. X.; Wu, S. D.; Yang, F.: Cyclic deformation behavior of as-extruded mg – 3%Al – 1%Zn, Scripta mater. 58, 751-754 (2008)
[84] Yin, S. M.; Yang, F.; Yang, X. M.; Wu, S. D.; Li, S. X.; Li, G. Y.: The role of twinning – detwinning on fatigue fracture morphology of mg – 3%Al – 1%Zn alloy, Mater. sci. Eng. A. 494, 397-400 (2008)
[85] Yoo, M. H.: Slip, twinning, and fracture in hexagonal close-packed metals, Metall. mater. Trans. A 12, 409-418 (1981)
[86] Yoshinaga, H.; Horiuchi, R.: On the nonbasal slip in magnesium crystals, Trans. jpn. Inst. met. 5, 14-21 (1963)
[87] Zeng, R. C.; Ke, W.; Han, E. H.: Influence of loading frequency and aging heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy, Int. J. Fatigue 31, 463-467 (2009)
[88] Zhang, J.; Jiang, Y.: Fatigue of polycrystalline copper with different grain sizes and texture, Int. J. Plasticity 22, 536-556 (2006) · Zbl 1138.74304 · doi:10.1016/j.ijplas.2005.04.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.