×

Evolutionary potential games on lattices. (English) Zbl 1357.91008

Summary: Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

MSC:

91A22 Evolutionary games
05C57 Games on graphs (graph-theoretic aspects)

References:

[1] von Neumann, J.; Morgenstern, O., Theory of Games and Economic Behaviour (1944), Princeton University Press: Princeton University Press Princeton · Zbl 0063.05930
[2] Zeeman, E. C., Population dynamics from game theory, (Lecture Notes in Mathematics, vol. 819 (1980), Springer: Springer New York), 471-497 · Zbl 0448.92015
[3] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0526.90102
[4] Hofbauer, J.; Sigmund, K., The Theory of Evolution and Dynamical Systems (1988), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0678.92010
[5] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0914.90287
[6] Gintis, H., Game Theory Evolving (2000), Princeton University Press: Princeton University Press Princeton · Zbl 1159.91300
[7] Cressman, R., Evolutionary Dynamics and Extensive Form Games (2003), MIT Press: MIT Press Cambridge, MA · Zbl 1067.91001
[8] Nowak, M. A., Evolutionary Dynamics (2006), Harvard University Press: Harvard University Press Cambridge, MA · Zbl 1098.92051
[9] Sigmund, K., The Calculus of Selfishness (2010), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1189.91010
[10] Sandholm, W. H., Population Games and Evolutionary Dynamics (2010), MIT University Press: MIT University Press Cambridge, MA · Zbl 1208.91003
[11] Maynard Smith, J.; Price, G. R., The logic of animal conflict, Nature, 246, 15-18 (1973) · Zbl 1369.92134
[12] Taylor, P.; Jonker, L., Evolutionary stable strategies and game dynamics, Math. Biosci., 40, 145-156 (1978) · Zbl 0395.90118
[13] Hofbauer, J.; Schuster, P.; Sigmund, K., A note on evolutionary stable strategies and game dynamics, J. Theoret. Biol., 81, 609-612 (1979)
[14] Schuster, P.; Sigmund, K., Replicator dynamics, J. Theoret. Biol., 100, 533-538 (1983)
[15] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 1390-1396 (1981) · Zbl 1225.92037
[16] Axelrod, R., The Evolution of Cooperation (1984), Basic Books: Basic Books New York
[17] Helbing, D., Interrelations between stochastic equations for systems with pair interactions, Physica A, 181, 29-52 (1992)
[18] Schlag, K. H., Why imitate, and if so, how? A bounded rational approach to multi-armed bandits, J. Econom. Theory, 78, 130-156 (1998) · Zbl 0895.90003
[19] Hummert, S.; Bohl, K.; Basanta, D.; Deutsch, A.; Werner, S.; Theissen, G.; Schröter, A.; Schuster, S., Evolutionary game theory: cells as players, Mol. BioSyst., 10, 3044-3065 (2014)
[20] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[21] Nowak, M. A.; May, R. M., The spatial dilemmas of evolution, Int. J. Bifur. Chaos, 3, 35-78 (1993) · Zbl 0870.92011
[22] Szabó, G.; Fáth, G., Evolutionary games on graphs, Phys. Rep., 446, 97-216 (2007)
[23] Allen, B.; Nowak, M. A., Games on graphs, EMS Surv. Math. Sci., 1, 113-151 (2014) · Zbl 1303.91040
[24] Perc, M.; Szolnoki, A., Coevolutionary games-a mini review, BioSystems, 99, 109-125 (2010)
[25] Pacheco, J. M.; Santos, F. C.; Souza, M. O.; Skyrms, B., Evolutionary dynamics of collective action in \(n\)-person stag hunt dilemmas, Proc. R. Soc. Lond. B, 276, 315-321 (2009)
[26] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría and Y. Moreno, L. M., Evolutionary dynamics of group interactions on structured populations: a review, J. R. Soc. Interface, 10, 20120997 (2013)
[27] Monderer, D.; Shapley, L. S., Potential games, Games Econ. Behav., 14, 124-143 (1996) · Zbl 0862.90137
[28] Blume, L. E., The statistical mechanics of strategic interactions, Games Econ. Behav., 5, 387-424 (1993) · Zbl 0797.90123
[29] Candogan, O.; Menache, I.; Ozdaglar, A.; Parrilo, P. A., Flows and decomposition of games: Harmonic and potential games, Math. Oper. Res., 36, 474-503 (2011) · Zbl 1239.91006
[31] Szabó, G.; Bodó, K. S.; Allen, B.; Nowak, M. A., Fourier decomposition of payoff matrix for symmetric three-strategy games, Phys. Rev. E, 90, Article 042811 pp. (2014)
[32] Cheng, D., On finite potential games, Automatica, 50, 1793-1801 (2014) · Zbl 1296.93069
[33] Mallozzi, L., An application of optimization theory to the study of equilibria for games: a survey, Cent. Eur. J. Oper. Res., 21, 523-539 (2013) · Zbl 1339.91004
[34] Fudenberg, D.; Tirole, J., Game Theory (1991), MIT Press: MIT Press Cambridge, MA · Zbl 1339.91001
[35] Gibbons, R., Game Theory for Applied Economists (1992), Princeton University Press: Princeton University Press Princeton, NJ
[36] Weibull, J. W., Evolutionary Game Theory (1995), MIT Press: MIT Press Cambridge, MA · Zbl 0879.90206
[37] Samuelson, L., Evolutionary Games and Equilibrium Selection (1997), MIT Press: MIT Press Cambridge, MA · Zbl 0953.91500
[38] Nash, J., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. USA, 36, 48-49 (1950) · Zbl 0036.01104
[39] Nash, J., Non-cooperative games, Ann. of Math., 54, 286-295 (1951) · Zbl 0045.08202
[40] Harsanyi, J. C.; Selten, R., A General Theory of Equilibrium Selection in Games (1988), MIT Press: MIT Press Cambridge, MA · Zbl 0693.90098
[41] Schnakenberg, J., Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys., 48, 571-585 (1976)
[42] Fisher, R. A., The Genetical Theory of Natural Selection (1930), Clarendon Press: Clarendon Press Oxford · JFM 56.1106.13
[43] Beckmann, M.; McGuire, C. B., Studies in the Economics of Transportation (1956), Yale University Press: Yale University Press New Haven
[44] Rosenthal, R. W., A class of games possessing pure-strategy nash equilibria, Int. J. Game Theory, 2, 65-67 (1973) · Zbl 0259.90059
[45] Facchini, G.; van Megen, F.; Borm, P.; Tijs, S., Congestion models and weighted Bayesian potential games, Theory and Decision, 42, 193-206 (1997) · Zbl 0888.90165
[46] Sandholm, W. H., Potential games with continuous player sets, J. Econom. Theory, 97, 80-108 (2001) · Zbl 0990.91005
[47] Slade, M. E., What does an oligopoly maximize, J. Econom. Theory, 42, 45-51 (1994)
[48] Voorneveld, M., Best response potential games, Econ. Lett., 66, 289-295 (2000) · Zbl 0951.91008
[49] Morris, S.; Ui, T., Generalized potential and robust sets of equilibria, J. Econ. Theor., 124, 45-78 (2005) · Zbl 1100.91004
[50] Blume, L. E., The statistical-mechanics of best-response strategy revision, Games Econ. Behav., 11, 111-145 (1995) · Zbl 0840.90140
[51] Sandholm, W. H., Decompositions and potentials for normal form games, Games Econ. Behav., 70, 446-456 (2010) · Zbl 1200.91025
[52] Kirchhoff, G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanisher Ströme gefürt wird, Annu. Rev. Phys. Chem., 72, 497-508 (1847)
[53] Desoer, C. A.; Kuh, E. S., Basic Circuit Theory (1969), MacGraw-Hill
[54] Harary, F.; Norman, R. Z.; Cartwright, D., Structural Models: An Introduction to the Theory of Directed Graphs (1966), Wiley: Wiley New York · Zbl 0139.41503
[55] Bollobás, B., Modern Graph Theory (1998), Springer: Springer New York · Zbl 0902.05016
[56] Szép, J.; Forgó, F., Introduction to Theory of Games (1985), Akadémiai Kiadó: Akadémiai Kiadó Budapest · Zbl 0578.90096
[57] Kleinberg, N. L.; Weiss, J. H., The orthogonal decomposition of games and an averaging formula for the shapley value, Math. Oper. Res., 11, 117-124 (1986) · Zbl 0592.90102
[58] Candogan, O.; Ozdaglar, A.; Parrilo, P. A., Dynamics in near-potential games, Games Econ. Behav., 82, 66-90 (2013) · Zbl 1282.91048
[59] Szabó, G.; Bodó, K. S.; Allen, B.; Nowak, M. A., Four classes of interactions for evolutionary games, Phys. Rev. E, 92, Article 022820 pp. (2015)
[60] Adami, C.; Schossau, J.; Hintze, A., Evolution and stability of altruist strategies in microbial games, Phys. Rev. E, 85, Article 011914 pp. (2012)
[61] Cui, P.; Wu, Z.-X., Selfish punishment with avoiding mechanism can alleviate both first-order and second-order social dilemma, J. Theoret. Biol., 361, 111-123 (2014) · Zbl 1302.91023
[62] May, R. M.; Leonard, W. J., Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29, 243-253 (1975) · Zbl 0314.92008
[63] Tainaka, K., Physics and ecology of rock-paper-scissors game, (Marsland, T.; Frank, I., Lecture Notes in Computer Science, vol. 2063 (2001), Springer: Springer Berlin), 384-395 · Zbl 0989.92500
[64] Frey, E., Evolutionary game theory: theoretical concepts and applications to microbial communities, Physica A, 389, 4265-4298 (2010) · Zbl 1225.91010
[65] Szolnoki, A.; Mobilia, M.; Jyian, L.-L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, 20140735 (2014)
[66] Ahmed, N.; Rao, K. R., Orthogonal Transforms for Digital Signal Processing (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0335.94001
[67] van Valen, L. M., A new evolutionary law, Evol. Theory, 1, 1-30 (1973)
[68] van Valen, L. M., Evolution as a zero-sum game for energy, Evol. Theory, 4, 289-300 (1980)
[69] Friedman, D., Evolutionary games in economics, Econometrica, 59, 637-666 (1991) · Zbl 0745.90012
[70] Cressman, R.; Morrison, W. G.; Wen, J.-F., On the evolutionary dynamics of crime, Can. J. Econ., 31, 1101-1117 (1998)
[71] Cao, Z.; Yang, X., The fashion game: Network extension of matching pennies, Theoret. Comput. Sci., 540-541, 169-181 (2014) · Zbl 1347.91073
[72] Sardanyés, J.; Solé, R. V., Red Queen coevolution on fitness landscapes, (Richter, H.; Engelbrecht, A., Recent Advances in the Theory and Application of Fitness Landscapes, Emergence, Complexity and Computation, vol. 6 (2014), Springer: Springer Berlin), 301-338
[73] Juul, J.; Kianercy, A.; Bernhardsson, S.; Pigolotti, S., Replicator dynamics with turnover of players, Phys. Rev. E, 88, Article 022806 pp. (2013)
[74] Xu, B.; Wang, S.; Wang, Z., Periodic frequencies of the cycles in 2×2 games: evidence from experimental economics, Eur. Phys. J. B, 87, 46 (2014)
[75] Macy, M. W.; Flache, A., Learning dynamics in social dilemmas, Proc. Natl. Acad. Sci. USA, 99, 7229-7236 (2002) · Zbl 1355.91014
[76] Santos, F. C.; Pacheco, J. M.; Lenaerts, T., Evolutionary dynamics of social dilemmas in structured heterogeneous populations, Proc. Natl. Acad. Sci. USA, 103, 3490-3494 (2006)
[77] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643-646 (2004)
[78] Morris, P., Introduction to Game Theory (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0823.90143
[79] Szabó, G.; Szolnoki, A., Selfishness, fraternity, and other-regarding preference in spatial evolutionary games, J. Theoret. Biol., 299, 81-87 (2012) · Zbl 1337.91024
[80] Nowak, M. A.; Bonhoeffer, S.; May, R. M., More spatial games, Int. J. Bifurcat. Chaos, 4, 33-56 (1994) · Zbl 0884.90147
[81] Vainstein, M. H.; Arenzon, J. J., Disordered environments in spatial games, Phys. Rev. E, 64, Article 051905 pp. (2001)
[82] Holme, P.; Trusina, A.; Kim, B. J.; Minnhagen, P., Prisoner’s dilemma in real-world acquaintance networks: spikes and quasiequilibria induced by the interplay between structure and dynamics, Phys. Rev. E, 68, Article 030901 pp. (2003)
[83] Kim, B. J.; Trusina, A.; Holme, P.; Minnhagen, P.; Chung, J. S.; Choi, M. Y., Dynamic instabilities induced by asymmetric influence: prisoner’s dilemma game in small-world networks, Phys. Rev. E, 66, Article 021907 pp. (2002)
[84] Masuda, N.; Aihara, K., Spatial prisoner’s dilemma optimally played in small-world networks, Phys. Lett. A, 313, 55-61 (2003) · Zbl 1098.91566
[85] Durán, O.; Mulet, R., Evolutionary prisoner’s dilemma in random graphs, Physica D, 208, 257-265 (2005) · Zbl 1104.91006
[86] Vukov, J.; Szabó, G.; Szolnoki, A., Cooperation in the noisy case: prisoner’s dilemma game on two types of regular random graphs, Phys. Rev. E, 73, Article 067103 pp. (2006)
[87] De Santis, E.; Marinelli, C., A class of stochastic games with infinitely many interacting agents related to glauber dynamics on random graphs, J. Phys. A, 49, 11777-11790 (2007) · Zbl 1123.82015
[88] Wu, Z.-X.; Xu, X.-J.; Chen, Y.; Wang, Y.-H., Spatial prisoner’s dilemma game with volunteering in newman-watts small-world networks, Phys. Rev. E, 71, Article 037103 pp. (2005)
[89] Tomassini, M.; Luthi, L.; Giacobini, M., Hawks and doves games on small-world networks, Phys. Rev. E, 73, Article 016132 pp. (2006)
[90] Santos, F. C.; Pacheco, J. M., Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95, Article 098104 pp. (2005)
[91] Santos, F. C.; Rodrigues, J. F.; Pacheco, J. M., Graph topology plays a determinant role in the evolution of cooperation, Proc. R. Soc. B, 273, 51-55 (2006)
[92] Szabó, G.; Tomé, T.; Borsos, I., Probability currents and entropy productions in nonequilibrium lattice systems, Phys. Rev. E, 82, Article 011105 pp. (2010)
[93] Brown, G. W., Iterative solution of games by fictious play, (Koopmans, T. C., Activity Analysis of Production and Allocation (1951), Wiley: Wiley New York), 373-376 · Zbl 0045.09902
[94] Monderer, D.; Shapley, L. S., Fictious play property for games with identical interests, J. Econom. Theory, 68, 258-265 (1996) · Zbl 0849.90130
[95] Essam, J. W., Percolation theory, Rep. Progr. Phys., 43, 833-912 (1980)
[96] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1992), Taylor & Francis: Taylor & Francis London
[97] Sysi-Aho, M.; Saramäki, J.; Kertész, J.; Kaski, K., Spatial snowdrift game with myopic agents, Eur. Phys. J. B, 44, 129-135 (2005)
[98] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 208-249 (2009)
[99] Helbing, D., Microscopic foundation of stochastic game dynamical equations, (Leinfellner, W.; Köhler, E., Game Theory, Experience, Rationality (1998), Kluwer Academic: Kluwer Academic Dordrecht), 211-224 · Zbl 0978.91009
[100] Szabó, G.; Tőke, C., Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E, 58, 69-73 (1998)
[101] Alonso-Sanz, R.; Martín, C.; Martín, M., The effect of memory in the spatial continuous-valued prisoner’s dilemma, Int. J. Bifurcat. Chaos, 11, 2061-2083 (2001)
[102] Ohtsuki, H.; Nowak, M. A., Evolutionary games on cycles, Proc. R. Soc. Lond. B, 273, 2249-2256 (2006)
[103] Wild, G.; Gardner, A.; West, S. A., Adaptation and the evolution of parasite virulence in a connected world, Nature, 459, 983-986 (2009)
[104] Wu, B.; Altrock, P. M.; Wang, L.; Traulsen, A., Universality of weak selection, Phys. Rev. E, 82, Article 046106 pp. (2010)
[105] Willensdorfer, M.; Nowak, M. A., Mutation in evolutionary games can increase average fitness at equilibrium, J. Theoret. Biol., 237, 355-362 (2005) · Zbl 1445.92217
[106] Antal, T.; Nowak, M. A.; Traulsen, A., Strategy abundance in 2×2 games for arbitrary mutation rates, J. Theoret. Biol., 257, 340-344 (2009) · Zbl 1400.91058
[107] Tarnita, C. E.; Antal, T.; Nowak, M. A., Mutation-selection equilibrium in games with mixed strategies, J. Theoret. Biol., 261, 50-57 (2009) · Zbl 1403.91046
[108] Sharp, K.; Matschinsky, F., Translation of Ludwig Boltzmann’s paper on the relationship between the second fundamental theorem of the mechanical theory of heat and probability calculations regarding the conditions for thermal equilibrium, Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, pp. 164-223, Barth, Leipzig, 1909, Entropy, 17, 1971-2009 (2015)
[109] Glauber, R. J., Time-dependent statistics of the ising model, J. Math. Phys., 4, 294-307 (1963) · Zbl 0145.24003
[110] Fudenberg, D.; Levine, D. K., Learning in games: Where do we stand, Eur. Econ. Rev., 42, 631-639 (1998)
[111] Eggarter, T. P., Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9, 2989 (1974)
[112] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic: Academic London · Zbl 0538.60093
[113] Yang, Z. R., Solvable Ising model in Sierpinski carpets: The partition function, Phys. Rev. E, 49, 2457-2460 (1994)
[114] Kawasaki, K., Diffusion constant near the critical point for time-dependent Ising models I, Phys. Rev., 145, 224-230 (1966)
[115] Landau, L. D.; Lifshitz, E. M., Statistical Physics, third ed., Part 1 (1980), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 0080.19702
[116] Toda, K.; Kubo, R.; Saito, N., Statistical Physics I: Equilibrium Statistical Mechanics (1991), Springer: Springer Berlin, Heidelberg · Zbl 0757.60109
[117] Boltzmann, L., Über die Benziehung zwischen dem Zweiten Hauptsatze der mechanischen Wärmethorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wämegleichgewicht, Sitzunber. Kais. Akad. Wiss. Wien Math. Naturwiss. Classe, 76, 373-435 (1877)
[118] Gibbs, J. W., Elementary Principles in Statistical Mechanics (1902), Yale University Press: Yale University Press New Haven · JFM 33.0708.01
[119] Szilárd, L., Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen (On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings), Z. Phys., 53, 840-856 (1929) · JFM 55.0488.06
[120] Jaynes, I. T., Information theory and statistical mechanics, Phys. Rev., 106, 620-628 (1957) · Zbl 0084.43701
[121] Blume, L. E., How noise matters, Games Econ. Behav., 44, 251-271 (2003) · Zbl 1056.91011
[122] Cohen, M. H.; Eliazar, I. I., Econophysical visualization of Adam Smith’s invisible hand, Physica A, 392, 813-822 (2013)
[123] Shannon, C. E.; Weaver, W., Mathematical Theory of Communication (1949), University of Illinois Press: University of Illinois Press Urbana · Zbl 0041.25804
[124] Haken, H., Information and Self-organization (1988), Springer: Springer Berlin · Zbl 1064.92500
[125] Callen, H. B., Thermodynamics (1960), Wiley: Wiley New York · Zbl 0128.22605
[126] Alberty, R. M., Use of Legendre transform in chemical thermodynamics, Pure Appl. Chem., 73, 1349-1380 (2001)
[127] Zia, R. K.P.; Redish, E. F.; McKay, S. R., Making sense of the Legendre transform, Amer. J. Phys., 77, 614-622 (2009)
[128] Graham, R.; Tél, T., Existence of potential for dissipative dynamical systems, Phys. Rev. Lett., 52, 9-12 (1984)
[129] Graham, R.; Hamm, A.; Tél, T., Nonequilibrium potential for dynamical systems with fractal attractors or repellers, Phys. Rev. Lett., 66, 3089-3092 (1991) · Zbl 0968.37505
[130] Beck, C.; Cohen, E. D.G., Superstatistics, Physica A, 332, 267-275 (2003) · Zbl 1038.82049
[131] Hanel, R.; Thurner, S.; Gell-Mann, M., Generalized entropies and the transformation group of superstatistics, Proc. Natl. Acad. Sci., 108, 6390-6394 (2011) · Zbl 1256.82002
[132] Szabó, G.; Szolnoki, A.; Vukov, J., Selection of dynamical rules in spatial prisoner’s dilemma games, Europhys. Lett., 87, 18007 (2009)
[133] Tisza, L., Generalized Thermodynamics (1966), MIT Press: MIT Press Cambridge, MA · Zbl 0119.44402
[134] Callen, H. B., Thermodynamics and an Introduction to Thermostatistics (1985), John Wiley & Sons: John Wiley & Sons New York · Zbl 0989.80500
[135] Kubo, R., The fluctuation-dissipation theorem, Phys. Rep., 29, 255-280 (1966) · Zbl 0163.23102
[136] Morita, T., Cluster variation method and Möbius inversion formula, J. Stat. Phys., 59, 819-825 (1990) · Zbl 0718.60112
[137] Gratias, D.; Sanchez, J. M.; de Fontaine, D., Application of group theory to the calculation of the configurational entropy in the cluster variation method, Physica, 113, 315 (1982)
[138] Gutowitz, H. A.; Victor, J. D.; Knight, B. W., Local structure theory for cellular automata, Physica D, 28, 18-48 (1987) · Zbl 0634.92022
[139] Dickman, R., Driven lattice gas with repulsive interactions: Mean-field theory, Phys. Rev. A, 41, 2192-2195 (1990)
[140] Bethe, H. A., Statistical theory of superlattices, Proc. R. Soc. (London) A, 150, 552 (1935) · Zbl 0012.04501
[141] Kikuchi, R., A theory of cooperative phenomena, Phys. Rev., 81, 988-1003 (1951) · Zbl 0043.44002
[142] Kikuchi, R.; Brush, S., Improvement of the cluster-variation method, J. Chem. Phys., 47, 195-203 (1967)
[143] Morita, T., General structure of the distribution functions for the heisenberg model and the Ising model, J. Math. Phys., 13, 115-123 (1972)
[144] de Fontaine, D., Cluster variation and cluster statics, (Morin-Lopez, J. L.; Sanchez, J. M., Theory and Applications of the Cluster Variation and Path Probability Methods (1996), Springer US), 125-144
[145] Udvardi, L.; Szabó, G., Lattice-gas model for alkali-fullerides: face-centered-cubic structure, J. Phys.: Condens. Matter, 8, 10959-10971 (1996)
[146] Brush, S. G., History of the Lenz-Ising model, Rev. Modern Phys., 39, 883-893 (1967)
[147] Niss, M., History of the Lenz-Ising model 1920-1950: From ferromagnetic to cooperative phenomena, Arch. Hist. Exact Sci., 59, 267-318 (2005) · Zbl 1068.82001
[148] Niss, M., History of the Lenz-Ising model 1950-1965: From irrelevance to relevance, Arch. Hist. Exact Sci., 63, 243-287 (2009) · Zbl 1180.01037
[149] Niss, M., History of the Lenz-Ising model 1965-1971: the role of simple model in understanding critical phenomena, Arch. Hist. Exact Sci., 65, 625-658 (2011) · Zbl 1241.01027
[150] Sornette, D., Physics and financial economics (1776-2014): puzzles, Ising and agent-based models, Rep. Progr. Phys., 77, Article 062001 pp. (2014)
[151] Lenz, W., Beitrag zum Verständnis der magnetischen Erscheinungen in festen KörpernTheorie des Ferromagnetismus, Physik. Z., 21, 613-615 (1920)
[152] Ising, E., Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31, 253-258 (1925) · Zbl 1439.82056
[153] Bozorth, R. M., Ferromagnetism (1951), Van Nostrand
[154] Mattis, D. C., Theory of Magnetism (1965), Harper and Row · Zbl 0129.23603
[155] Peierls, R. E., On Ising’s model of ferromagnetism, Proc. Camb. Phil. Soc., 32, 477-481 (1936) · Zbl 0014.33604
[156] Griffiths, R. B., Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev., 136, 437-439 (1964) · Zbl 0129.23205
[157] Bragg, W. L.; Williams, E. J., The effect of the thermal agitation on atomic arrangement in alloys, Proc. R. Soc. (London) A, 145, 699 (1934)
[158] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 117-149 (1944) · Zbl 0060.46001
[159] Newell, G. F.; Montroll, E. W., On the theory of the Ising model of ferromagnetism, Rev. Modern Phys., 25, 353-389 (1953) · Zbl 0053.18601
[160] Domb, C., Ising model, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, vol. 3 (1974), Academic Press: Academic Press London), 357-484
[161] Kawasaki, K., Kinetics of Ising models, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, vol. 2 (1972), Academic Press: Academic Press London), 443-501
[162] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena (1971), Clarendon Press: Clarendon Press Oxford
[163] Kittel, C., Introduction to Solid State Physics (2004), John Wiley & Sons: John Wiley & Sons Chichester
[164] Alefeld, G.; Völkl, J., Hydrogen in metals I: Basic properties, (Topics in Applied Physics, vol. 28 (1978), Springer-Verlag: Springer-Verlag Berlin)
[165] Dieterich, W.; Fulde, P.; Peschel, I., Superionic conductors, Adv. Phys., 29, 345 (1980)
[166] Dresselhaus, M. S.; Dresselhaus, G., Intercalation compounds of graphite, Adv. Phys., 51 (2002)
[167] Kosuge, K., Chemistry of Non-stoichiometric Compounds (1994), Oxford University Press: Oxford University Press Oxford
[168] Pelissetto, A.; Vicari, E., Critical phenomena and renormalization group theory, Phys. Rep., 368, 549-727 (2002) · Zbl 0997.82019
[169] Galam, S.; Gefen, Y.; Shapir, Y., Sociophysics: A mean behavior model for the process of strike, Math. J. Sociol., 9, 1-13 (1982)
[170] Krause, S. M.; Bornholdt, S., Spin models as microfoundation of macroscopic market models, Physica A, 392, 4048-4054 (2013)
[171] Herz, A. V.M., Collective phenomena in spatially extended evolutionary games, J. Theoret. Biol., 169, 65-87 (1994)
[172] Lee, I. H.; Valentinyi, Á., Interactive contagion, Rev. Econ. Stud., 67, 47-66 (2000) · Zbl 0956.91026
[173] Brock, W. A.; Durlauf, S. N., Discrete choice with social interactions, Rev. Econ. Stud., 68, 235-260 (2001) · Zbl 0980.91016
[174] Weisbuch, G.; Stauffer, D., “Antiferromagnetism” in social relations and Bonabeau model, Physica A, 384, 542-548 (2007)
[175] Galam, S.; Walliser, B., Ising model versus normal form game, Physica A, 389, 481-489 (2010)
[176] Grauwin, S.; Hunt, D.; Bertin, E.; Jensen, P., Effective free energy for individual dynamics, Adv. Complex Systems, 14, 529-536 (2011) · Zbl 1262.91117
[177] Nowak, M.; Sigmund, K., The evolution of stochastic strategies in the prisoner’s dilemma, Acta Appl. Math., 20, 247-265 (1990) · Zbl 0722.90092
[178] Potts, R. B., Some generalized order-disorder transitions, Math. Proc. Cambridge Philos. Soc., 48, 106-109 (1952) · Zbl 0048.45601
[179] Ashkin, J.; Teller, E., Statistics of two-dimensional lattices with four components, Phys. Rev., 64, 178-184 (1943)
[180] Kihara, T.; Midzuno, Y.; Shizume, T., Statistics of two-dimensional lattices with many components, J. Phys. Soc. Japan, 9, 681-687 (1954)
[181] Domb, C., Graph theory and embeddings, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, vol. 3 (1974), Academic Press: Academic Press London), 1-95
[182] Wu, F. Y., The Potts model, Rev. Modern Phys., 54, 235-268 (1982)
[183] Alexander, S., Lattice gas transition of He on grafoil: A continuous transition with cubic terms, Phys. Lett. A, 54, 353 (1975)
[184] Domany, E.; Riedel, E. K., Phase transitions in two-dimensional systems, J. Appl. Phys., 49, 1315 (1978)
[185] Gouyet, J. F.; Sapoval, B.; Pfeuty, P., Antiferroelectric transition in \(\beta \)-alumina, a realization of the \(D = 2, s = 3\) Potts model?, J. Phys. Lett., 41, L115-L117 (1980)
[186] Domany, E.; Schick, M.; Walker, J. S.; Griffiths, R. B., Classification of continuous order-disorder transitions in adsorbed monolayers, Phys. Rev. B, 18, 2209 (1978)
[187] Liggett, T. M., Interacting Particle Systems (1985), Springer: Springer New York · Zbl 0832.60094
[188] Wang, W.-X.; Lü, J.; Chen, G.; Hui, P. M., Phase transition and hysteresis loop in structured games with global updating, Phys. Rev. E, 77, Article 046109 pp. (2008)
[189] Wolpert, D. H.; Harré, M.; Olbrich, E.; Bertschinger, N.; Jost, J., Hysteresis effects of changing parameters on noncooperative games, Phys. Rev. E, 85, Article 036102 pp. (2012)
[190] Hua, D.-Y., Hysteresis behavior and nonequilibrium phase transition in a one-dimensional evolutionary game model, Chin. Phys. B, 22, Article 040512 pp. (2013)
[191] van der Waerden, B. L., Die lange Reichweite der regelmassigen Atomanordnung in Mischkristallen, Z. Phys., 118, 473-488 (1941) · Zbl 0026.28301
[192] Wannier, G. H., The statistical problem in cooperative phenomena, Rev. Modern Phys., 17, 50-60 (1945)
[193] Domb, C., On the theory of cooperative phenomena in crystals, Adv. Phys., 9, 149-244 (1960)
[194] Kramers, H. A.; Wannier, G. H., Statistics of the two-dimensional ferromagnet. part 1, Phys. Rev., 60, 252-262 (1941) · Zbl 0027.28505
[195] Wegner, F. J., Duality in generalized Ising models and phase transitions without local order parameter, J. Math. Phys., 12, 2259-2272 (1971)
[196] Fisher, M. E., The theory of equilibrium critical phenomena, Phys. Rep., 30, 616-730 (1967)
[197] Griffiths, R. B., Dependence of critical indices on a parameter, Phys. Rev. Lett., 24, 1479-1482 (1970)
[198] Rapaport, D. C.; Domb, C., The smoothness postulate and the Ising antiferromagnet, J. Phys. C: Sol. St. Phys., 4, 2684-2694 (1971)
[199] Marconi, U. M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A., Fluctuation-dissipation: Response theory in statistical physics, Phys. Rep., 461, 111-195 (2008)
[200] Kadanoff, L. P., Static phenomena near critical points: Theory and experiments, Rev. Modern Phys., 39, 395-431 (1967)
[201] Wilson, K. G., The renormalization group and critical phenomena, Rev. Modern Phys., 55, 583-600 (1983)
[202] Stanley, H. E., Scaling, universality, and renormalization: thee pillars of modern critical phenomena, Rev. Modern Phys., 71, S358-S366 (1999)
[203] Fischer, M. E., Renormalization group theory: Its basis and formulation in statistical physics, Rev. Modern Phys., 70, 653-681 (1998) · Zbl 1205.82072
[204] Ódor, G., Universality in Nonequilibrium Lattice Systems (2008), World Scientific: World Scientific Singapore · Zbl 1159.82002
[205] Pérez, G.; Sastre, F.; Medina, R., Critical exponents for the extended dynamical systems with simultaneous updating: the case of Ising model, Physica D, 168-169, 318-324 (2002) · Zbl 1001.82043
[206] Wolfram, S., Universality and complexity in cellular automata, Physica D, 10, 1-35 (1984) · Zbl 0562.68040
[207] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical phenomena in complex networks, Rev. Modern Phys., 80, 1275-1335 (2008)
[208] Vukov, J.; Varga, L.; Allen, B.; Nowak, M. A.; Szabó, G., Payoff components and their effects in a spatial three-strategy evolutionary social dilemma, Phys. Rev. E, 92, Article 012813 pp. (2015)
[209] Müller-Hartmann, E.; Zittartz, J., New type of phase transition, Phys. Rev. Lett., 33, 893 (1974)
[210] Wang, Y. K.; Wu, F. Y., Multi-component spin model on a Cayley tree, J. Phys. A: Math. Gen., 9, 593 (1976)
[211] Ostilli, M., Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists, Physica A, 391, 3417-3423 (2012)
[212] Mélin, R.; d’Auriac, J. C.A.; Chandra, P.; Doucot, B., Glassy behavior in the ferromagnetic Ising model on a Cayley tree, J. Phys. A: Math. Gen., 29 (1996), 6773-5804 · Zbl 0900.82098
[213] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47-97 (2002) · Zbl 1205.82086
[214] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[215] Szabó, G.; Hauert, C., Evolutionary prisoner’s dilemma games with voluntary participation, Phys. Rev. E, 66, Article 062903 pp. (2002)
[216] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[217] Newman, M. E.J.; Watts, D. J., Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, 341-346 (1999) · Zbl 0940.82029
[218] Barrat, A.; Weigt, M., On the properties of small-world network model, Eur. Phys. J. B: Math. Gen., 13, 547-560 (2000)
[219] Gitterman, M., Small-world phenomena in physics: the Ising model, J. Phys. A: Math. Gen., 33, 8373-8381 (2000) · Zbl 0970.82005
[220] Herrero, C. P., Ising model in small-world networks, Phys. Rev. E, 65, Article 066110 pp. (2002)
[221] Chatterjee, A.; Sen, P., Phase transitions in an Ising model on a Euclidean network, Phys. Rev. E, 74, Article 036109 pp. (2006)
[222] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Ising model on networks with an arbitrary distribution of connections, Phys. Rev. E, 66, Article 016104 pp. (2002) · Zbl 1130.94024
[223] Leone, M.; Vázquez, A.; Vespignani, A.; Zecchina, R., Ferromagnetic ordering in graphs with arbitrary degree distribution, Eur. Phys. J. B, 28, 191-197 (2002)
[224] Aleksiejuk, A.; Holyst, J.; Stauffer, D., Ferromagnetic phase transition in Barabási-Albert networks, Physica A, 310, 260-266 (2002) · Zbl 0995.82016
[225] Gefen, Y.; Mandelbrot, B. B.; Aharony, A., Critical phenomena on fractal lattices, Phys. Rev. Lett., 45, 855-858 (1980)
[226] Gefen, Y.; Meir, Y.; Mandelbrot, B. B.; Aharony, A., Geometric interpretation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices, Phys. Rev. Lett., 50, 145-148 (1983)
[227] Mandelbrot, B. B., Fractals: Form, Chance and Dimension (1977), Freeman: Freeman San Francisco · Zbl 0376.28020
[228] Bhanot, G.; Neuberger, H.; Shapiro, J. A., Simulation of a critical Ising fractal, Phys. Rev. Lett., 53, 2277-2280 (1984)
[229] d’Auriac, J. C.A.; Rammal, R., Critical behavior of the kinetic Ising model on a fractal lattice, J. Phys. A: Math. Gen., 19, L655-L661 (1986)
[230] Bonnier, B.; Leroyer, Y.; Meyers, C., Real-space renormalization-goup study of fractal Ising models, Phys. Rev. B, 37, 5205-5210 (1988)
[231] Monceau, P.; Perreau, M.; Hébert, F., Magnetic critical behavior of the Ising model on fractal structures, Phys. Rev. B, 58, 6386-6393 (1998)
[232] Carmona, J. M.; Marconi, U. M.B.; Ruiz-Lorenzo, J. J.; Tarancón, A., Critical properties of the Ising model on Sierpinski fractals: A finite-size scaling-analysis approach, Phys. Rev. B, 58, 14387-14396 (1998)
[233] Gefen, Y.; Aharony, A.; Mandelbrot, B. B., Phase transitions on fractals: I quasi-linear lattices, J. Phys. A: Math. Gen., 16, 1267-1278 (1983)
[234] Gefen, Y.; Aharony, A.; Shapir, Y.; Mandelbrot, B. B., Phase transitions on fractals: II Sierpinski gaskets, J. Phys. A: Math. Gen., 17, 435-444 (1984)
[235] Mandelbrot, B. B., The Fractal Geometry of Nature (1983), Freeman: Freeman New York · Zbl 0504.28001
[236] Wu, Y.-K.; Hu, B., Phase transitions on complex Sierpinski carpets, Phys. Rev. A, 35, 1404-1411 (1987)
[237] Monceau, P.; Hsiao, P.-Y., Direct evidence for weak universality on fractal structures, Physica A, 331, 1-9 (2004)
[238] Dembo, A.; Montanari, A., Ising models on locally tree-like graphs, Ann. Appl. Probab., 20, 565-592 (2010) · Zbl 1191.82025
[239] Montanari, A.; Mossel, E.; Sly, A., The weak limit of Ising models on locally tree-like graphs, Probab. Theory Related Fields, 152, 31-51 (2012) · Zbl 1242.82012
[240] Dembo, A.; Montanari, A.; Sun, N., Factor models on locally tree-like graphs, Ann. Probab., 41, 4162-4213 (2013) · Zbl 1280.05119
[241] Ruelle, D., Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9, 267 (1968) · Zbl 0165.29102
[242] Dyson, F. J., Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys., 12, 91-107 (1969) · Zbl 1306.47082
[243] Dyson, F. J., An Ising ferromagnet with discontinuous long-range order, Comm. Math. Phys., 21, 269-283 (1971)
[244] Imbrie, J. Z.; Newman, C. M., An intermediate phase with slow decay of correlations in one-dimensional \(1 / | x - y | + 2\) percolation, Ising Potts models, Comm. Math. Phys., 118, 303-336 (1988)
[245] Fisher, M. E.; Ma, S.; Nickel, B. G., Critical exponents for long-range interactions, Phys. Rev. Lett., 29, 917-920 (1972)
[246] Wille, L. T., Mean-field theory of oxygen-vacancy ordering in \(Y Ba_2 Cu_3 O_{7 - \delta}\), Phys. Rev. B., 40, 6931-6940 (1989)
[247] Binder, K.; Landau, D. P., Phase diagrams and critical behavior in Ising square lattices with nearest- and next-nearest-neighbor interactions, Phys. Rev. B, 21, 1941-1962 (1980)
[248] Yin, J.; Landau, D. P., Phase diagram and critical behavior of the square-lattice Ising model with competing nearest-neighbor and next-nearest-neighbor interactions, Phys. Rev. E, 80, Article 051117 pp. (2009)
[249] de Queiroz, S. L.A., Scaling behavior of a square-lattice Ising model with competing interactions in a uniform field, Phys. Rev. E, 84, Article 031132 pp. (2011)
[250] Gompper, G.; Schick, M., Self-Assembling Amphiphilic Systems (1994), Academic Press: Academic Press London
[251] Henriksen, J. R.; Sabra, M. C.; Mouritsen, O. G., Phase transitions and steady state microstructure in a two-temperature lattice-gas with mobile active impurities, Phys. Rev. E, 62, 7070-7076 (2000)
[252] Yin, J.; Landau, D. P., Square lattice gases with two- and three-body interactions revisited: A row-shifted (2×2) phase, Phys. Rev. E, 81, Article 031121 pp. (2010)
[253] Dublenych, Y. I., Ground states of the lattice-gas model on triangular lattice with nearest- and next-nearest-neighbor pairwise interactions and with three-particle interaction: ground states at boundaries of full-dimensional regions, Phys. Rev. E, 84, Article 061102 pp. (2011)
[254] Diep, H. T., Frustrated Spin Systems (2004), World Scientific: World Scientific Singapore · Zbl 1104.82002
[255] Wannier, G. H., Antiferromagnetism. The triangular Ising net, Phys. Rev., 79, 357-364 (1950) · Zbl 0038.41904
[256] Rojas, M.; Rojas, O.; de Souza, S. M., Frustrated Ising model on the Cairo pentagonal lattice, Phys. Rev. E, 86, Article 051116 pp. (2012)
[257] Berker, A. N.; Kadanoff, L. P., Ground-state entropy and algebraic order at low temperatures, J. Phys. A: Math. Gen., 13, L259-L264 (1980)
[258] Cannella, V.; Mydosh, J. A., Magnetic ordering in gold-iron alloys, Phys. Rev. B, 6, 4220-4237 (1972)
[259] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin Glass Theory and Beyond (1987), World Scientific: World Scientific Singapore · Zbl 0992.82500
[260] Stein, D. L.; Newman, C. M., (Spin Glasses and Complexity. Spin Glasses and Complexity, Primers in Complex Systems (2013), Princeton University Press: Princeton University Press Princeton, NY) · Zbl 1277.82003
[261] Normand, J. M.; Mehta, M. L.; Orland, H., One-dimensional random Ising models, J. Phys. A: Math. Gen., 18, 621-639 (1985)
[262] Nishimori, H., Statistical Physics of Spin Glasses and Information Processing (2013), Oxford University Press: Oxford University Press Oxford
[263] Galluccio, S.; Bouchaud, J.-P.; Potter, M., Rational decisions, random matrices and spin glasses, Physica A, 259, 449-456 (1998)
[264] Stein, D. L., Spin Glasses and Biology (1992), World Scientific: World Scientific Singapore
[265] Domany, E., Some results for the two-dimensional Ising model with competing interactions, J. Phys. C, 12, L119-L123 (1979)
[266] Edwards, S. F.; Anderson, P. W., Theory of spin glasses, J. Phys. F: Metal Phys., 5, 965-974 (1975)
[267] Sherrington, D.; Kirkpatrick, S., Solvable model of a spin-glass, Phys. Rev. Lett., 35, 1792-1796 (1975)
[268] Thouless, D. J.; Anderson, P. W.; Palmer, R. G., Solution of ‘solvable model of a spin glass’, Phil. Mag., 35, 593-601 (1977)
[269] Parisi, G., Infinite number of order parameters for spin-glasses, Phys. Rev. Lett., 43, 1754-1756 (1979)
[270] Parisi, G., The order parameter for spin-glasses: A function on the interval 0-1, J. Phys. A: Math. Gen., 13, 1101-1112 (1980)
[271] Parisi, G., Order parameter for spin-glasses, Phys. Rev. Lett., 50, 1946-1948 (1983)
[272] Newman, C. M.; Stein, D. L., Simplicity of state and overlap structure in finite volume realistic spin glasses, Phys. Rev. E, 57, 1356-1366 (1998)
[273] Middleton, A. A., Extracting thermodynamic behavior of spin glasses from overlap function, Phys. Rev. B, 87, 220201(R) (2013)
[274] Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D., Cumulative overlap distribution function in realistic spin glasses, Phys. Rev. B, 90, Article 094201 pp. (2014)
[275] Newman, C. M.; Stein, D. L., Distribution of pure states in short-range spin glasses, Internat. J. Modern Phys. B, 24, 2091-2106 (2010) · Zbl 1195.82093
[276] Read, N., Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking, Phys. Rev. E, 90, Article 032142 pp. (2014)
[277] Imry, Y.; Ma, S., Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett., 35, 1399-1401 (1975)
[278] Villain, J., Commensurate-incommensurate transition with frozen impurities, J. Phys. (Paris) Lett., 43 (1982), L51-L558
[279] Imbrie, J. Z., Lower critical dimension of the random-field Ising model, Phys. Rev. Lett., 53, 1747-1750 (1984)
[280] Gawlinski, E. T.; Kaski, K.; Grant, M.; Gunton, J. D., Domain growth in the Ising model in a random magnetic field, Phys. Rev. Lett., 53, 2266-2269 (1984)
[281] Grest, G. S.; Soukoulis, C. M.; Levin, K., Comparative monte carlo and mean-field studies of random-field Ising systems, Phys. Rev. B, 33, 7659-7674 (1986)
[282] Mackenzie, N. D., The 2d random-field ising model-Monte Carlo simulations, J. Phys. C: Solid State Phys., 19, 563-567 (1986)
[283] Frontera, C.; Vives, E., Numerical signs for a transition in the two-dimensional random field ising model at \(t = 0\), Phys. Rev. E, 59, R1295 (1999)
[284] Shrivastav, G. P.; Kumar, M.; Banerjee, V.; Puri, S., Ground-state morphologies in the random-field ising model: Scaling properties and non-Porod behavior, Phys. Rev. E, 90, Article 032140 pp. (2014)
[285] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435-479 (1977)
[286] Langer, J. S., An introduction to the kinetics of first-order phase transition, (Godreche, C., Solids Far from Equilibrium (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 297
[287] Bray, A. J., Theory of phase ordering kinetics, Adv. Phys., 43, 357-459 (1994)
[288] Brakke, K. A., The Motion of a Surface by its Mean Curvature (1978), Princeton University: Princeton University Princeton · Zbl 0386.53047
[289] Brower, R. C.; Kessler, D. A.; Koplik, J.; Levine, H., Geometrical models of interface evolution, Phys. Rev. A, 29, 1335-1342 (1984)
[290] Goldstein, R. E.; Petrich, D. M., The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett., 67, 3203-3206 (1991) · Zbl 0990.37519
[291] Garcke, H., Curvature driven interface evolution, Jahresber. Dtsch. Math.-Ver., 115, 63-100 (2013) · Zbl 1279.53064
[292] Biswas, S.; Sen, P., Effect of the nature of randomness on quenching dynamics of the ising model on complex networks, Phys. Rev. E, 84, Article 066107 pp. (2011)
[293] Clifford, P.; Sudbury, A., A model for spatial conflict, Biometrika, 60, 581-588 (1973) · Zbl 0272.60072
[294] Bramson, M.; Griffeath, D., Clustering and dispersion rates for some interacting particle systems on \(z^1\), Ann. Probab., 8, 183-213 (1980) · Zbl 0429.60098
[295] Lipowski, A., Anomalous phase-ordering kinetics in the ising model, Physica A, 268, 6-13 (1999)
[296] Spirin, V.; Krapivsky, P. L.; Redner, S., Fate of zero-temperature Ising ferromagnets, Phys. Rev. E, 63, Article 036118 pp. (2001)
[297] Das, P. K.; Sen, P., Zero temperature dynamics of ising model on a densely connected small world network, Eur. Phys. J. B, 47, 391-396 (2005)
[298] Grest, G. S.; Anderson, M. P.; Srolovitz, D. J., Domain-growth kinetics in for the \(q\)-state Potts model in two and three dimensions, Phys. Rev. B, 38, 4752-4760 (1988)
[299] Loureiro, M. P.O.; Arenzon, J. J.; Cugliandolo, L. F., Geometrical properties of the potts model during coarsening regime, Phys. Rev. E, 85, Article 021135 pp. (2012)
[300] Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K., Refractory high-entropy alloys, Intermetallics, 18, 1758-1765 (2010)
[301] Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys, J. Metals, 65, 1759-1771 (2013)
[302] Carroll, R.; Li, C.; Tsai, C.-W.; Yeh, J.; Antonaglis, J.; Brinkman, B. A.W.; LeBlanc, M.; Xie, X.; Chen, S.; Liaw, P. K.; Dahmen, K. A., Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys, Sci. Rep., 5, 16997 (2015)
[303] Szolnoki, A.; Szabó, G.; Perc, M., Phase diagrams for the spatial public goods game with pool punishment, Phys. Rev. E, 83, Article 036101 pp. (2011)
[304] Szolnoki, A.; Szabó, G.; Czakó, L., Competition of individual and institutional punishments spatial public goods games, Phys. Rev. E, 84, Article 046106 pp. (2011)
[305] Hintze, A.; Adami, C., Punishment in public goods games leads to metastable phase transitions and hysteresis, Phys. Biol., 12, Article 046005 pp. (2015)
[306] Shigaki, K.; Wang, Z.; Tanimot, J.; Fukuda, E., Effects of initial fraction of cooperators on cooperative behavior in evolutionary prisoner’s dilemma game, PLoS ONE, 8, e76942 (2013)
[307] Griffiths, R. B., Nonanalytic behavior above the critical point in a random ising ferromagnet, Phys. Rev. Lett., 23, 17-19 (1969)
[308] Griffiths, R. B.; Lenowitz, J. L., Random spin systems: some rigorous results, J. Math. Phys., 9, 1284-1292 (1968) · Zbl 0181.57202
[309] Palmer, R. G.; Stein, D. L.; Abrahams, E.; Anderson, P. W., Models of hierarchically constrained dynamics for glassy relaxation, Phys. Rev. Lett., 53, 958-961 (1984)
[310] De Dominicis, C.; Orland, H.; Lainée, F., Stretched exponential relaxation in systems with random free energies, J. Physique Lett., 46, L463-L466 (1985)
[311] Randeria, M.; Sethna, J. P.; Palmer, R. G., Low-frequency relaxation in Ising spin-glasses, Phys. Rev. Lett., 54, 1321-1324 (1985)
[312] Bray, A. J., The nature of the Griffiths phase, Phys. Rev. Lett., 59, 586-589 (1987)
[313] Noest, A. J., Power-law relaxation of spatially disordered stochastic cellular automata and directed percolation, Phys. Rev. B, 38, 2715-2720 (1988)
[314] Noest, A. J., New universality for spatially disordered cellular automata and directed percolation, Phys. Rev. Lett., 57, 90-93 (1986)
[315] Moreira, A. G.; Dickman, R., Critical dynamics of the contact process with quenched disorder, Phys. Rev. E, 54, R3090 (1996)
[316] Harris, T. E., Contact interactions on a lattice, Ann. Probab., 2, 969-988 (1974) · Zbl 0334.60052
[317] Kinzel, W., Phase transitions of cellular automata, Z. Phys. B, 58, 229-244 (1985) · Zbl 1174.82316
[318] Hinrichsen, H., Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., 49, 815-958 (2000)
[319] Dickman, R.; Moreira, A. G., Violation of scaling in the contact process with quenched disorder, Phys. Rev. E, 57, 1263-1268 (1998)
[320] Muñoz, M. A.; Juhász, R.; Castellano, C.; Ódor, G., Griffiths phases on complex networks, Phys. Rev. Lett., 105, Article 128701 pp. (2010)
[321] Droz, M.; Szwabinski, J.; Szabó, G., Motion of influential players can support cooperation in prisoner’s dilemma, Eur. Phys. J. B, 71, 579-585 (2009) · Zbl 1188.91144
[322] Szabó, G.; Varga, L.; Borsos, I., Evolutionary matching-pennies game on bipartite regular networks, Phys. Rev. E, 89, Article 042820 pp. (2014)
[323] Szolnoki, A.; Szabó, G., Vertex dynamics during domain growth in three-state models, Phys. Rev. E, 70, Article 027101 pp. (2004)
[324] Szolnoki, A.; Szabó, G.; Ravasz, M., Three-state Potts model in combination with the rock-scissors-paper game, Phys. Rev. E, 71, Article 027102 pp. (2005)
[325] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Volunteering as red queen mechanism for cooperation in public goods game, Science, 296, 1129-1132 (2002)
[326] Nowak, M.; Sigmund, K., Oscillation in the evolutionary reciprocity, J. Theoret. Biol., 137, 21-26 (1989)
[327] Fehr, E.; Gächter, S., Altruistic punishment in humans, Nature, 415, 137-140 (2002)
[328] Field, R. J.; Noyes, R. M., Oscillations in chemical systems. IV. Limit cycle behavior in a model of real chemical reaction, J. Chem. Phys., 60, 1877-1884 (1974)
[329] Showalter, K.; Epstein, I. R., From chemical systems to systems chemistry: patterns in space and time, Chaos, 25, Article 097613 pp. (2015)
[330] Wiener, N.; Rosenblueth, A., Conduction of impulses in cardiac muscle, Arc. Inst. Cardiol. (Mexico), 16, 205-265 (1946) · Zbl 0134.37904
[331] Hempel, H.; Schimansky-Geier, L.; Garcia-Ojalvo, J., Noise-sustained pulsating patterns and global oscillations in subexitable media, Phys. Rev. Lett., 82, 3713-3716 (1999)
[332] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115, 700-721 (1927) · JFM 53.0517.01
[333] Durrett, R.; Levin, S., Allelopathy in spatial distributed populations, J. Theoret. Biol., 185, 165-171 (1997)
[334] Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, B. J.M., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418, 171-174 (2002)
[335] Frey, E.; Reichenbach, T., Bacterial games, (Meyer-Ortmanns, H.; Thurner, S., Evolution: From the Planck Epoch to Complex Multicellular Life (2011), Springer: Springer Berlin, Heidelberg), 297-329
[336] Tainaka, K., Paradoxial effect in a three-candidate voter model, Phys. Lett. A, 176, 303-306 (1993)
[337] Tainaka, K., Indirect effect in cyclic voter models, Phys. Lett. A, 207, 53-57 (1995) · Zbl 1020.82606
[338] Tainaka, K.; Araki, N., Press perturbation in lattice ecosystems: Parity law and optimum strategy, J. Theoret. Biol., 197, 1-13 (1999)
[339] Sato, K.; Yoshida, N.; Konno, N., Parity law for population dynamics of \(n\)-species with cyclic advantage competition, Appl. Math. Comput., 126, 255-270 (2002) · Zbl 1017.92026
[340] Szabó, G.; Szolnoki, A.; Sznaider, G. A., Segregation process and phase transition in cyclic predator-prey models with even number of species, Phys. Rev. E, 76, Article 051921 pp. (2007)
[341] May, R. M., Hypercycles spring to life, Nature, 353, 607-608 (1991)
[342] Szabó, G., Competing associations in six-species predator-prey models, J. Phys. A: Math. Gen., 38, 6689-6702 (2005) · Zbl 1069.92030
[343] Szabó, P.; Czárán, T.; Szabó, G., Competing associations in bacterial warfare with two toxins, J. Theoret. Biol., 248, 736-744 (2007) · Zbl 1451.92204
[344] Szabó, G.; Szolnoki, A.; Borsos, I., Self-organizing patterns maintained by competing associations in six-species predator-prey model, Phys. Rev. E, 77, Article 041919 pp. (2008)
[345] Rulands, S.; Reichenbach, T.; Frey, E., Threefold way to extinction in populations of cyclically competing species, J. Stat. Mech., L01003 (2011)
[346] Vukov, J.; Szolnoki, A.; Szabó, G., Diverging fluctuations in a spatial five-species cyclic dominance game, Phys. Rev. E, 88, Article 022123 pp. (2013)
[347] Dobrinevski, A.; Alava, M.; Reichenbach, T.; Frey, E., Mobility-dependent selection of competing strategy associations, Phys. Rev. E, 89, Article 012721 pp. (2014)
[348] Wiltermuth, S. S.; Heath, C., Synchrony and cooperation, Psychol. Sci., 20, 1-5 (2009)
[349] Wolfram, S., Statistical mechanics of cellular automata, Rev. Modern Phys., 55, 601-644 (1983) · Zbl 1174.82319
[350] Langton, C. G., Studying artificial life with cellular automata, Physica D, 22, 120-149 (1986)
[351] Varga, L.; Vukov, J.; Szabó, G., Self-organizing patterns in an evolutionary rock-paper-scissors game for stochastic synchronized strategy updates, Phys. Rev. E, 90, Article 042920 pp. (2014)
[352] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, Article 174102 pp. (2004)
[353] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Different types of chimera states: an interplay between spatial and dynamical chaos, Phys. Rev. E, 90, Article 032920 pp. (2014)
[354] Santos, M. S.; Jr., J. D.S.; Batista, A. M.; Caldas, I. L.; Viana, R. L.; Lopes, S. R., Recurrence quantification analysis of chimera states, Phys. Lett. A, 379, 2188-2192 (2015)
[355] Laing, C. R., Chimera in networks with purely local coupling, Phys. Rev. E, 92, 050904(R) (2015)
[356] Xie, J.; Knobloch, E.; Kao, H.-C., Twisted chimera states and multicore spiral chimera states on two-dimensional torus, Phys. Rev. E, 92, Article 042921 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.