×

A spectral quadrilateral multidomain penalty method model for high Reynolds number incompressible stratified flows. (English) Zbl 1455.65167

Summary: A two-dimensional quadrilateral spectral multidomain penalty method (SMPM) model has been developed for the simulation of high Reynolds number incompressible stratified flows. The implementation of higher-order quadrilateral subdomains renders this model a nontrivial extension of a one-dimensional subdomain SMPM model built for the simulation of the same type of flows in vertically nonperiodic domains [P. J. Diamessis et al., J. Comput. Phys. 202, No. 1, 298–322 (2005; Zbl 1061.76054)]. The nontrivial aspects of this extension consist of the implementation of subdomain corners, the penalty formulation of the pressure Poisson equation (PPE), and, most importantly, the treatment of specific challenges that arise in the iterative solution of the SMPM-discretized PPE. The two primary challenges within the framework of the iterative solution of the PPE are its regularization to ensure the consistency of the associated linear system of equations and the design of an appropriate two-level preconditioner. A qualitative and quantitative assessment of the accuracy, efficiency, and stability of the quadrilateral SMPM solver is provided through its application to the standard benchmarks of the Taylor vortex, lid-driven cavity, and double shear layer. The capacity of the flow solver for the study of environmental stratified flow processes is shown through the simulation of long-distance propagation of an internal solitary wave of depression in a manner that is free of numerical dispersion and dissipation. The methods and results presented in this paper make it a point of reference for future studies oriented toward the reliable application of the quadrilateral SMPM model to more complex environmental stratified flow process studies.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76D50 Stratification effects in viscous fluids

Citations:

Zbl 1061.76054
Full Text: DOI

References:

[1] HesthavenJS, GottliebD. A stable penalty method for the compressible Navier‐Stokes equations: I. open boundary conditions. SIAM Journal of Scientific Computing1996; 17(3):579-612. · Zbl 0853.76061
[2] HesthavenJS. A stable penalty method for the compressible Navier‐Stokes equations: II. one‐dimensional domain decomposition schemes. SIAM Journal of Scientific Computing1997; 18(3):658-685. · Zbl 0882.76061
[3] HesthavenJS. A stable penalty method for the compressible Navier‐Stokes equations: III. multidimensional domain decomposition schemes. SIAM Journal of Scientific Computing1998; 20(1):62-93. · Zbl 0957.76059
[4] BoydJP. Chebyshev and Fourier Spectral Methods, Dover: Mineola, New York, 2001. · Zbl 0994.65128
[5] DevilleMO, FischerPF, MundE. High Order Methods for Incompressible Fluid Flow, Cambridge University Press: Cambridge, UK, 2002. · Zbl 1007.76001
[6] HesthavenJS, WarburtonT. Nodal Discontinuous Galerkin Methods, Springer‐Verlag: New York, NY, USA, 2008. · Zbl 1134.65068
[7] MetivetB, MorchoisneY. Multi‐domain spectral technique for viscous flow calculations, Conference on Numerical Methods in Fluid Mechanics, 4th, Paris, France, 1981. October 7-9, 1981. ONERA, TP no. 1981‐134, 14 p.
[8] KoprivaDA. A spectral multidomain method for the solution of hyperbolic systems. Applied Numerical Mathematics1986; 2: 221-241. · Zbl 0601.76087
[9] CanutoC, HussainiMY, QuarteroniA, ZangTA. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer‐Verlag: New York, NY, USA, 2007. · Zbl 1121.76001
[10] DiamessisPJ, DomaradzkiJA, HesthavenJS. A spectral multidomain penalty method model for the simulation of high Reynolds number localized stratified turbulence. Journal of Computational Physics2005; 202: 298-322. · Zbl 1061.76054
[11] KoprivaDA. Multidomain spectral solution of the Euler gas dynamics equations. Journal of Computational Physics1991; 96: 428-450. · Zbl 0726.76077
[12] KoprivaDA. Multidomain spectral solution of compressible viscous flows. Journal of Computational Physics1994; 115: 184-199. · Zbl 0822.76071
[13] DonWS, GottliebD, JungJH. A multidomain spectral method for supersonic reactive flows. Journal of Computational Physics2003; 192: 325-354. · Zbl 1047.76088
[14] SenguptaK, JacobsGB, MashayekF. Large‐eddy simulation of compressible flows using a spectral multi‐domain method. International Journal for Numerical Methods in Fluids2009; 61: 311-340. · Zbl 1170.76020
[15] ThorpeS. The Turbulent Ocean, Cambridge University Press: Cambridge, UK, 2005.
[16] WintersKB, McKinnonJ, MillsB. A spectral model for process studies of density stratified flows. Journal of Atmospheric and Oceanic Technology2004; 21(1):69-94.
[17] WintersKB, de laFuenteA. Modelling rotating stratified flows at laboratory‐scale using spectrally‐based DNS. Ocean Modelling2012; 49-50(0):47-59.
[18] SubichCJ, LambKG, StastnaM. Simulation of the Navier‐Stokes equations in three dimensions with a spectral collocation method. International Journal for Numerical Methods in Fluids2013; 73(2):103-129. · Zbl 1455.65196
[19] DiamessisPJ, SpeddingGR, DomaradzkiJA. Similarity scaling and vorticity structure in high Reynolds number stably stratified turbulent wakes. Journal of Fluid Mechanics2011; 671: 52-95. · Zbl 1225.76167
[20] DiamessisPJ, RedekoppLG. Numerical investigation of solitary internal wave‐induced global instability in shallow water benthic boundary layers. Journal of Physical Oceanography2006; 36(5):784-812.
[21] DiamessisPJ, WunschS, DelwicheI, RichterMP. Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline. Submitted to Dynamics of Atmospheres and Oceans2013. DOI: 10.1016/j.dynatmoce.2014.02.003.
[22] KarniadakisGE, IsraeliM, OrszagSA. High‐order splitting methods for the incompressible Navier‐Stokes equations. Journal of Computational Physics1991; 97: 414-443. · Zbl 0738.76050
[23] Escobar‐VargasJA. 2012. A spectral multidomain penalty method solver for environmental flow processes, Ph.D. Thesis, Cornell University.
[24] DurranDR. Numerical Methods for Fluid Dynamics: with Applications to Geophysics, Second, Springer: New York, NY, USA, 2010. · Zbl 1214.76001
[25] HesthavenJS, GottliebS, GottliebD. Spectral Methods for Time‐Dependent Problems, Cambridge University Press: Cambridge, UK, 2007. · Zbl 1111.65093
[26] PozrikidisC. A note on the regularization of the discrete Poisson‐Neumann problem. Journal of Computational Physics2001; 172: 917-923. · Zbl 1034.76043
[27] KunduPK, CohenIM. Fluid Mechanics, Academic Press: San Diego, 2004.
[28] ZangTA. On the rotation and skew‐symmetric forms for incompressible flow simulations. Applied Numerical Mathematics1991; 7(1):27-40. · Zbl 0708.76071
[29] ChorinAJ. Numerical solution of the Navier‐Stokes equations. Mathematics of Computation1968; 22(104):745-762. · Zbl 0198.50103
[30] GuermondJL, ShenJ. An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering2006; 41: 112-134. · Zbl 1130.76395
[31] PeyretR. Spectral Methods for Incompressible Viscous Flow, Springer‐Verlag: New York, 2002. · Zbl 1005.76001
[32] GottliebD, StreettCL. Quadrature imposition of compatibility conditions in Chebyshev methods. Journal of Scientific Computing1990; 5: 223-239. · Zbl 0725.76060
[33] GuermondJL, ShenJ. Velocity‐correction projection methods for incompressible flows. SIAM Journal on Numerical Analysis2003; 41: 112-134. · Zbl 1130.76395
[34] CostaB, DonWS. On the computation of high order pseudospectral derivatives. Applied Numerical Mathematics2000; 33: 151-159. · Zbl 0964.65020
[35] BaltenspergerR, TrummerMR. Spectral differencing with a twist. SIAM Journal of Scientific Computing2002; 24(5):1465-1487. · Zbl 1034.65016
[36] JungJH. 2002. Multi‐domain spectral penalty method for hyperbolic systems: theory and applications, Ph.D. Thesis, Brown University.
[37] GiannakourosJG, SidilkoverD, KarniadakisGE. Spectral element FCT method for the one and two‐dimensional compressible Euler equations. Computer Methods in Applied Mechanics and Engineering1994; 116(1-4):113-121. · Zbl 0826.76062
[38] GiraldoFX, HesthavenJS, WarburtonT. Nodal high‐order discontinuous Galerkin methods for the spherical shallow water equations. Journal of Computational Physics2002; 181: 499-525. · Zbl 1178.76268
[39] CanutoC, HussainiMY, QuarteroniA, ZangTA. Spectral Methods: Fundamentals in Single Domains, Springer‐Verlag: New York, NY, USA, 2006. · Zbl 1093.76002
[40] BlackburnHM, SchmidtS. Spectral element filtering techniques for large eddy simulation with dynamic estimation. Journal of Computational Physics2003; 186: 610-629. · Zbl 1047.76520
[41] OrszagSA, IsraeliM, DevilleMO. Boundary conditions for incompressible flows. Journal of Scientific Computing1986; 1: 75-111. · Zbl 0648.76023
[42] GreshoPM, SaniRL. On pressure boundary conditions for the incompressible Navier‐Stokes equations. International Journal for Numerical Methods in Fluids1987; 7: 1111-1145. · Zbl 0644.76025
[43] FischerPF, MillerNI, TufoHM. 2000. An overlapping Schwarz method for spectral element simulation of three‐dimensional incompressible flows, InParallel Solution of Partial Differential Equations, Springer‐Verlag.
[44] ShabhaziK, FischerPF, RossvEthierC. A high‐order discontnuous Galerkin method for the unsteady incompressible Navier‐Stokes equations. Journal of Computational Physics2007; 222: 391-407. · Zbl 1216.76034
[45] KarniadakisGE, SherwinS. Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press: New York, NY, USA, 2005. · Zbl 1116.76002
[46] BotellaO, PeyretR. Benchmark spectral results on the lid‐driven cavity flow. Computers & Fluids1998; 27: 421-433. · Zbl 0964.76066
[47] ErturkE, CorkeTC, GokcolC. Numerical solutions of 2D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids2005; 48: 747-774. · Zbl 1071.76038
[48] SchultzWW, LeeNY, BoydJP. Chebyshev pseudospectral method of viscous flow with corner singularities. Journal of Scientific Computing1989; 4: 1-24. · Zbl 0679.76042
[49] ShenJ. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics1991; 95(1):228-245. · Zbl 0725.76059
[50] PhillipsTN, RobertsGW. The treatment of spurious pressure modes in spectral incompressible flow calculations. Journal of Computational Physics1993; 105(1):150-164. · Zbl 0766.76059
[51] WarburtonT, PavarinoLF, HesthavenJS. A pseudo‐spectral scheme for the incompressible Navier‐Stokes equations using unstructured nodal elements. Journal of Computational Physics2000; 164: 1-21. · Zbl 0961.76063
[52] LiuJG, ShuCW. A high‐order discontinuous Galerkin method for 2D incompressible flows. Journal of Computational Physics2000; 160: 577-596. · Zbl 0963.76069
[53] BrownDL, MinionML. Performance of under‐resolved two‐dimensional incompressible flow simulations. Journal of Computational Physics1995; 122: 165-183. · Zbl 0849.76043
[54] HelfrichKR, MelvilleWK. Long non‐linear internal waves. Annual Review of Fluid Mechanics2006; 38: 395-425. · Zbl 1098.76018
[55] SteinmoellerDT, StastnaM, LambKG. A short note on the discontinuous Galerkin discretization of the pressure projection operator in incompressible flow. Journal of Computational Physics2013; 251: 480-486. · Zbl 1349.65488
[56] GiraldoFX, RestelliM. High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model. International Journal for Numerical Methods in Fluids2010; 63(9):1077-1102. · Zbl 1267.76010
[57] Escobar‐VargasJA, DiamessisPJ, GiraldoFX. High‐order discontinuous element‐based schemes for the inviscid shallow water equations: spectral multidomain penalty and discontinuous Galerkin methods. Applied Mathematics and Computation2012; 218(9):4825-4848. · Zbl 1426.76501
[58] VitousekS, FringerOB. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling2011; 40(1):72-86.
[59] TurkingtonB, EydelandA, WangS. A computational method for solitary inernal waves in a continuously stratified fluid. Studies in Applied Mathematics1991; 85: 93-127. · Zbl 0728.76026
[60] LambKG, WanB. Conjugate flows and flat solitary waves for a continuously stratified fluid. Physics of Fluids1998; 10: 2061-2079. · Zbl 1185.76913
[61] CarrM, DaviesPA, ShivaramP. Experimental evidence of internal solitary wave‐induced global instability in shallow water benthic boundary layers. Physics of Fluids (1994‐present)2008; 20(6). (Available from:http://scitation.aip.org/content/aip/journal/pof2/20/6/10.1063/1.2931693), DOI: http://dx.doi.org/10.1063/1.2931693. · Zbl 1182.76119 · doi:10.1063/1.2931693
[62] BassiF, CrivelliniA, Di PietroDA, RebayS. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier‐Stokes equations. Journal of Computational Physics2006; 218(2):794-815. · Zbl 1158.76313
[63] LabeurRJ, WellsGN. A Galerkin interface stabilisation method for the advection diffusion and incompressible Navier‐Stokes equations. Computer Methods in Applied Mechanics and Engineering2007; 196(49‐52):4985-5000. · Zbl 1173.76344
[64] NguyenNC, PeraireJ, CockburnB. An implicit high‐order hybridizable discontinuous Galerkin method for the incompressible Navier‐Stokes equations. Journal of Computational Physics2011; 230(4):1147-1170. · Zbl 1391.76353
[65] ShabhaziK, MavripilisDJ, BurgessNK. Multigrid algorithms for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations. Journal of Computational Physics2009; 228: 7917-7940. · Zbl 1391.65181
[66] MontlaurA, Fernandez‐MendezS, PeraireJ, HuertaA. Discontinuous Galerkin methods for the Navier‐Stokes equations using solenoidal approximations. International Journal for Numerical Methods in Fluids2010; 64(5):549-564. · Zbl 1377.76008
[67] FerrerE. 2012. A high‐order discontinuous Galerkin‐fourier incompressible 3‐D Navier‐Stokes solver with rotating sliding meshes for simulating cross‐flow turbines, Ph.D. Thesis, Oxford University.
[68] DunphyM, SubichC, StastnaM. Spectral methods for internal waves: indistinguishable density profiles and double‐humped solitary waves. Nonlinear Processes in Geophysics2011; 18(3):351-358.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.