×

Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. (English) Zbl 1225.76167

Summary: The mean velocity profile scaling and the vorticity structure of a stably stratified, initially turbulent wake of a towed sphere are studied numerically using a high-accuracy spectral multi-domain penalty method model. A detailed initialization procedure allows a smooth, minimum-transient transition into the non-equilibrium (NEQ) regime of wake evolution. A broad range of Reynolds numbers, \(Re = UD/\nu \in [5 \times 10^{3}, 10^{5}]\) and internal Froude numbers, \(Fr = 2U/(ND) \in [4, 64]\) (\(U, D\) are characteristic velocity and length scales, and \(N\) is the buoyancy frequency) is examined. The maximum value of \(Re\) and the range of \(Fr\) values considered allow extrapolation of the results to geophysical and naval applications
At higher \(Re\), the NEQ regime, where three-dimensional turbulence adjusts towards a quasi-two-dimensional, buoyancy-dominated flow, lasts significantly longer than at lower \(Re\). At \(Re = 5 \times 10^{3}\), vertical fluid motions are rapidly suppressed, but at \(Re = 10^{5}\), secondary Kelvin-Helmholtz instabilities and ensuing turbulence are clearly observed up to \(Nt \approx 100\). The secondary motions intensify with increasing stratification strength and have significant vertical kinetic energy.
These results agree with existing scaling of buoyancy-driven shear on \(Re/Fr^{2}\) and suggest that, in the field, the NEQ regime may last up to \(Nt \approx 1000\). At a given high Re value, during the NEQ regime, the scale separation between Ozmidov and Kolmogorov scale is independent of \(Fr\). This first systematic numerical investigation of stratified turbulence (as defined by D. K. Lilly [“Stratified turbulence and the mesoscale variability of the atmosphere”, J. Atmos. Sci. 40, 749 (1983; doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2)], in a controlled localized flow with turbulent initial conditions suggests that a reconsideration of the commonly perceived life cycle of a stratified turbulent event may be in order for the correct turbulence parametrizations of such flows in both geophysical and operational contexts.

MSC:

76F45 Stratification effects in turbulence
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] DOI: 10.1016/S0377-0427(00)00510-0 · Zbl 0974.65093 · doi:10.1016/S0377-0427(00)00510-0
[2] DOI: 10.1017/S0022112004008067 · Zbl 1116.76304 · doi:10.1017/S0022112004008067
[3] DOI: 10.1017/S0022112005008128 · Zbl 1097.76039 · doi:10.1017/S0022112005008128
[4] DOI: 10.1017/S0022112092000119 · doi:10.1017/S0022112092000119
[5] DOI: 10.1146/annurev.fl.11.010179.001533 · doi:10.1146/annurev.fl.11.010179.001533
[6] DOI: 10.1175/1520-0469(1983)040&lt;0749:STATMV&gt;2.0.CO;2 · doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2
[7] DOI: 10.1103/PhysRevE.68.036308 · doi:10.1103/PhysRevE.68.036308
[8] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[9] DOI: 10.1006/jcph.2000.6552 · Zbl 0984.76036 · doi:10.1006/jcph.2000.6552
[10] DOI: 10.1017/S0022112097005478 · Zbl 0900.76172 · doi:10.1017/S0022112097005478
[11] DOI: 10.1175/1520-0485(1991)021&lt;0650:OTNOTI&gt;2.0.CO;2 · doi:10.1175/1520-0485(1991)021<0650:OTNOTI>2.0.CO;2
[12] DOI: 10.1175/1520-0485(1989)019&lt;0301:HDACOS&gt;2.0.CO;2 · doi:10.1175/1520-0485(1989)019<0301:HDACOS>2.0.CO;2
[13] DOI: 10.1175/1520-0485(1993)023&lt;1508:TISSFI&gt;2.0.CO;2 · doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2
[14] DOI: 10.1137/S1064827594268488 · Zbl 0853.76061 · doi:10.1137/S1064827594268488
[15] DOI: 10.1137/S1064827594276540 · Zbl 0882.76061 · doi:10.1137/S1064827594276540
[16] DOI: 10.1063/1.2204987 · doi:10.1063/1.2204987
[17] DOI: 10.1016/0021-9991(87)90031-3 · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[18] DOI: 10.1017/S0022112088001910 · doi:10.1017/S0022112088001910
[19] DOI: 10.1017/CBO9780511618604 · Zbl 1135.76001 · doi:10.1017/CBO9780511618604
[20] DOI: 10.1115/1.1516576 · doi:10.1115/1.1516576
[21] DOI: 10.1016/0377-0265(93)90036-7 · doi:10.1016/0377-0265(93)90036-7
[22] Gibson, Marine Turbulence pp 221– (1980)
[23] DOI: 10.1017/S0022112093001235 · doi:10.1017/S0022112093001235
[24] DOI: 10.1016/0377-0265(95)00415-7 · doi:10.1016/0377-0265(95)00415-7
[25] DOI: 10.1017/S0022112002002276 · Zbl 1026.76026 · doi:10.1017/S0022112002002276
[26] DOI: 10.1007/s00162-002-0056-y · Zbl 1061.76027 · doi:10.1007/s00162-002-0056-y
[27] Diamessis, Sixth International Symposium on Stratified Flows pp 183– (2006)
[28] DOI: 10.1017/S0022112003006992 · Zbl 1163.76379 · doi:10.1017/S0022112003006992
[29] DOI: 10.1063/1.870369 · Zbl 1149.76359 · doi:10.1063/1.870369
[30] DOI: 10.1016/j.jcp.2008.05.011 · Zbl 1256.76050 · doi:10.1016/j.jcp.2008.05.011
[31] DOI: 10.1016/j.jcp.2004.07.007 · Zbl 1061.76054 · doi:10.1016/j.jcp.2004.07.007
[32] Diamessis, Sixth International Symposium on Environmental Hydraulics (2010)
[33] DOI: 10.1017/S0022112007000109 · Zbl 1151.76489 · doi:10.1017/S0022112007000109
[34] DOI: 10.1016/0021-9991(79)90051-2 · Zbl 0416.76002 · doi:10.1016/0021-9991(79)90051-2
[35] DOI: 10.1175/1520-0426(2004)021&lt;0069:ASMFPS&gt;2.0.CO;2 · doi:10.1175/1520-0426(2004)021<0069:ASMFPS>2.0.CO;2
[36] DOI: 10.1017/S0022112004000977 · Zbl 1063.76044 · doi:10.1017/S0022112004000977
[37] Cousin, Advances in Scientific Computing and Applications pp 133– (2004)
[38] DOI: 10.1016/j.jcp.2004.09.011 · Zbl 1143.76477 · doi:10.1016/j.jcp.2004.09.011
[39] DOI: 10.1017/S0022112093002009 · doi:10.1017/S0022112093002009
[40] DOI: 10.1063/1.858353 · doi:10.1063/1.858353
[41] DOI: 10.1063/1.858742 · doi:10.1063/1.858742
[42] DOI: 10.1063/1.1693225 · doi:10.1063/1.1693225
[43] DOI: 10.1017/S0022112010000236 · Zbl 1193.76044 · doi:10.1017/S0022112010000236
[44] DOI: 10.1029/JC093iC05p05153 · doi:10.1029/JC093iC05p05153
[45] DOI: 10.1063/1.862705 · doi:10.1063/1.862705
[46] Thorpe, The Turbulent Ocean (2005) · doi:10.1017/CBO9780511819933
[47] DOI: 10.1029/JC092iC05p05329 · doi:10.1029/JC092iC05p05329
[48] Tennekes, A First Course in Turbulence (1972)
[49] DOI: 10.1017/S0022112007006854 · Zbl 1168.76327 · doi:10.1017/S0022112007006854
[50] DOI: 10.1137/0721062 · Zbl 0565.65048 · doi:10.1137/0721062
[51] Boyd, Chebyshev and Fourier Spectral Methods (2001) · Zbl 0994.65128
[52] DOI: 10.1017/S0022112096000237 · doi:10.1017/S0022112096000237
[53] DOI: 10.1016/0377-0265(95)00414-9 · doi:10.1016/0377-0265(95)00414-9
[54] DOI: 10.1017/S0022112001007182 · Zbl 1082.76544 · doi:10.1017/S0022112001007182
[55] DOI: 10.1063/1.1383784 · Zbl 1184.76525 · doi:10.1063/1.1383784
[56] DOI: 10.1017/S0022112096004557 · doi:10.1017/S0022112096004557
[57] DOI: 10.1002/fld.1959 · Zbl 1170.76020 · doi:10.1002/fld.1959
[58] Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction (2002) · Zbl 1020.76001 · doi:10.1007/978-3-662-04695-1
[59] DOI: 10.1175/1520-0469(1999)056&lt;2796:VAPVIM&gt;2.0.CO;2 · doi:10.1175/1520-0469(1999)056<2796:VAPVIM>2.0.CO;2
[60] DOI: 10.1175/2007JAS2455.1 · doi:10.1175/2007JAS2455.1
[61] DOI: 10.1146/annurev.fluid.32.1.613 · Zbl 0988.76019 · doi:10.1146/annurev.fluid.32.1.613
[62] DOI: 10.1063/1.1578077 · Zbl 1186.76446 · doi:10.1063/1.1578077
[63] DOI: 10.1017/S002211200400120X · Zbl 1060.76514 · doi:10.1017/S002211200400120X
[64] DOI: 10.1017/S0022112005005525 · Zbl 1138.76305 · doi:10.1017/S0022112005005525
[65] DOI: 10.1029/2003GL018092 · doi:10.1029/2003GL018092
[66] DOI: 10.1016/j.ocemod.2008.09.006 · doi:10.1016/j.ocemod.2008.09.006
[67] DOI: 10.1016/0169-5983(92)90023-P · doi:10.1016/0169-5983(92)90023-P
[68] DOI: 10.1063/1.1429963 · Zbl 1184.76065 · doi:10.1063/1.1429963
[69] DOI: 10.1017/S0022112093002010 · doi:10.1017/S0022112093002010
[70] DOI: 10.1016/j.compfluid.2005.04.008 · Zbl 1177.76372 · doi:10.1016/j.compfluid.2005.04.008
[71] DOI: 10.1063/1.1369125 · doi:10.1063/1.1369125
[72] DOI: 10.1017/S0022112000001166 · Zbl 0986.76021 · doi:10.1017/S0022112000001166
[73] DOI: 10.1017/S0022112000001154 · Zbl 0955.76517 · doi:10.1017/S0022112000001154
[74] DOI: 10.1017/S002211207800275X · doi:10.1017/S002211207800275X
[75] DOI: 10.1063/1.1412246 · Zbl 1184.76191 · doi:10.1063/1.1412246
[76] DOI: 10.1016/S0065-2687(08)60463-X · doi:10.1016/S0065-2687(08)60463-X
[77] DOI: 10.1017/S0022112088001983 · Zbl 0657.76041 · doi:10.1017/S0022112088001983
[78] Minguez, Commun. Comput. Phys. 5 pp 635– (2009)
[79] DOI: 10.1063/1.1630053 · Zbl 1186.76370 · doi:10.1063/1.1630053
[80] DOI: 10.1063/1.2361294 · Zbl 1138.76326 · doi:10.1063/1.2361294
[81] DOI: 10.1063/1.869405 · Zbl 1185.76764 · doi:10.1063/1.869405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.