×

A pseudo-spectral scheme for the incompressible Navier-Stokes equations using unstructured nodal elements. (English) Zbl 0961.76063

Summary: We propose a pseudo-spectral scheme for solving incompressible Navier-Stokes equations by using unstructured nodal triangles. Efficient algorithms are developed with optimal rates of convergence. Navier-Stokes simulations of Kovasznay flow, shear layer flow, and flow past a cylinder demonstrate different nodal sets considered and an alternative modal approach.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

Triangle
Full Text: DOI

References:

[1] Bos, L., Bounding the Lebesgue function for Lagrange interpolation in a simplex, J. Approx. Theor., 38, 43 (1983) · Zbl 0546.41003
[2] Bos, L., On certain configurations in \(\textbf{R}^n\) which are unisolvent for polynomial interpolation, J. Approx. Theor., 64, 271 (1991) · Zbl 0737.41002
[3] Brown, D. L.; Minion, M. L., Performance of under-resolved two-dimensional incompressible flow simulations, J. Comput. Phys., 121 (1995) · Zbl 0849.76043
[4] Canuto, C., Stabilization of spectral methods by finite element bubble functions, Comp. Meth. Appl. Mech. Eng., 116, 13 (1994) · Zbl 0826.76056
[5] Casarin, M., Quasi-optimal Schwarz methods for the conforming spectral element discretization, SIAM J. Numer. Anal., 34, 2482 (1997) · Zbl 0889.65123
[6] Chen, Q.; Babus̆ka, I., Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle, Comp. Meth. Appl. Mech. Eng., 128, 405 (1995) · Zbl 0862.65006
[7] Chen, Q.; Babus̆ka, I., The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron, Comp. Meth. Appl. Mech. Eng., 137, 89 (1996) · Zbl 0877.65004
[8] Deville, M.; Mund, E., Finite element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Stat. Comp., 11, 311 (1990) · Zbl 0701.65075
[9] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comp., 6, 345 (1991) · Zbl 0742.76059
[10] Fischer, P. F., An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 133, 84 (1997) · Zbl 0904.76057
[11] Gordon, W. J.; Hall, C. A., Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math., 21 (1973) · Zbl 0254.65072
[12] Heinrichs, W., Spectral collocation on triangular elements, J. Comput. Phys., 145, 743 (1998) · Zbl 0909.65089
[13] Henderson, R. D., Unstructured Spectral Element Methods: Parallel Algorithms and Simulations (1994)
[14] Henderson, R. D., Details of the drag curve near the onset of vortex shedding, Phys. Fluids, 7, 1 (1995)
[15] Hesthaven, J. S., From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35, 655 (1998) · Zbl 0933.41004
[16] J. S. Hesthaven, and, C. H. Teng, Stable spectral methods on tetrahedral elements, SIAM J. Sci. Comp, in press.; J. S. Hesthaven, and, C. H. Teng, Stable spectral methods on tetrahedral elements, SIAM J. Sci. Comp, in press. · Zbl 0959.65112
[17] Karniadakis, G.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 414 (1991) · Zbl 0738.76050
[18] Karniadakis, G.; Sherwin, S. J., Spectral hp Element Methods for CFD (1999) · Zbl 0954.76001
[19] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in, Theory and Applications of Special Functions, edited by, A. R. A. Academic Press, San Diego, 1975.; T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in, Theory and Applications of Special Functions, edited by, A. R. A. Academic Press, San Diego, 1975. · Zbl 0326.33002
[20] Kovasznay, L., Laminar flow behind a two-dimensional grid, Proc. Cambridge Philos. Soc., 44 (1948) · Zbl 0030.22902
[21] Meijerink, J. A.; Van der Vorst, H. A., Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they appear in practical problems, J. Comput. Phys., 44, 134 (1981) · Zbl 0472.65028
[22] Orzag, S. A., Spectral methods for problems in complex geometries, J. Comput. Phys., 70 (1980) · Zbl 0476.65078
[23] Owens, R., Spectral approximations on the triangle, Proc. R. Soc. London A, 454, 857 (1998) · Zbl 0915.35077
[24] Parter, S. V.; Rothman, E. E., Preconditioning Legendre spectral collocation approximations to elliptic problems, SIAM J. Numer. Anal., 333 (1995) · Zbl 0822.65093
[25] Pavarino, L. F.; Warburton, T., Overlapping Schwarz Methods for Unstructured Spectral Elements (1999) · Zbl 0957.65104
[26] Proriol, J., Sur une famille de polynomes á deux variables orthogonaux dans un triangle, C.R. Acad. Sci. Paris, 257, 2459 (1967) · Zbl 0080.05204
[27] Sherwin, S.; Karniadakis, G., Tetrahedral hp finite elements: Algorithms and flow simulations, J. Comput. Phys., 124, 14 (1996) · Zbl 0847.76038
[28] S. Sherwin, T. Warburton, and G. Karniadakis, Spectral/hp methods for elliptic problems on hybrid grids, in Domain Decomposition Methods 10, edited by J. Mandel, C. Farhat, and X.-C. Cai, Vol. 218, AMS, Contemporary Mathematics 1998, pp. 191-216.; S. Sherwin, T. Warburton, and G. Karniadakis, Spectral/hp methods for elliptic problems on hybrid grids, in Domain Decomposition Methods 10, edited by J. Mandel, C. Farhat, and X.-C. Cai, Vol. 218, AMS, Contemporary Mathematics 1998, pp. 191-216. · Zbl 0909.65087
[29] Sherwin, S. J., Triangular and Tetrahedral Spectral/hp Finite Element Methods for Fluid Dynamics (1995)
[30] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, edited by M. C. Lin and D. Manocha, Vol. 1148, Lecture Notes in Computer Science Springer-Verlag, New York, 1996, pp. 203-222. From the First ACM Workshop on Applied Computational Geometry.; J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, edited by M. C. Lin and D. Manocha, Vol. 1148, Lecture Notes in Computer Science Springer-Verlag, New York, 1996, pp. 203-222. From the First ACM Workshop on Applied Computational Geometry.
[31] K. Stuben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, in Multigrid Methods, edited by W. Hackbusch and U. TrottenbergSpringer Berlin, New York, 1982, pp. 1-176.; K. Stuben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, in Multigrid Methods, edited by W. Hackbusch and U. TrottenbergSpringer Berlin, New York, 1982, pp. 1-176. · Zbl 0562.65071
[32] Szegö, G., Orthogonal polynomials, Colloquium Publications 23 (1939) · JFM 65.0278.03
[33] M. Taylor, and, B. Wingate, Fekete collocation points for triangular spectral elements, submitted for publication.; M. Taylor, and, B. Wingate, Fekete collocation points for triangular spectral elements, submitted for publication.
[34] Warburton, T. C.E., Spectral/hp Methods on Polymorphic Multi-Domains: Algorithms and Applications (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.