×

Building models of topological quantum criticality from pivot Hamiltonians. (English) Zbl 07901053

Summary: Progress in understanding symmetry-protected topological (SPT) phases has been greatly aided by our ability to construct lattice models realizing these states. In contrast, a systematic approach to constructing models that realize quantum critical points between SPT phases is lacking, particularly in dimension \(d > 1\). Here, we show how the recently introduced notion of the pivot Hamiltonian – generating rotations between SPT phases – facilitates such a construction. We demonstrate this approach by constructing a spin model on the triangular lattice, which is midway between a trivial and SPT phase. The pivot Hamiltonian generates a \(U(1)\) pivot symmetry which helps to stabilize a direct SPT transition. The sign-problem free nature of the model – with an additional Ising interaction preserving the pivot symmetry – allows us to obtain the phase diagram using quantum Monte Carlo simulations. We find evidence for a direct transition between trivial and SPT phases that is consistent with a deconfined quantum critical point with emergent \(SO(5)\) symmetry. The known anomaly of the latter is made possible by the non-local nature of the \(U(1)\) pivot symmetry. Interestingly, the pivot Hamiltonian generating this symmetry is nothing other than the staggered Baxter-Wu three-spin interaction. This work illustrates the importance of \(U(1)\) pivot symmetries and proposes how to generally construct sign-problem-free lattice models of SPT transitions with such anomalous symmetry groups for other lattices and dimensions.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Txx Quantum field theory; related classical field theories
82Bxx Equilibrium statistical mechanics

References:

[1] X.-G. Wen, Quantum field theory of many-body systems: From the origin of sound to an origin of light and electrons, Oxford University Press, Oxford, UK, ISBN 9780199227259 (2007).
[2] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M. P. A. Fisher, Deconfined quantum critical points, Science 303, 1490 (2004), doi:10.1126/science.1091806. · doi:10.1126/science.1091806
[3] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, UK, ISBN 9780521514682 (2011), doi:10.1017/CBO9780511973765. · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[4] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Iden-tification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464 (1983), doi:10.1016/0375-9601(83)90631-X. · doi:10.1016/0375-9601(83)90631-X
[5] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987), doi:10.1103/PhysRevLett.59.799. · doi:10.1103/PhysRevLett.59.799
[6] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), doi:10.1103/PhysRevB.83.075103. · doi:10.1103/PhysRevB.83.075103
[7] F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010), doi:10.1103/PhysRevB.81.064439. · doi:10.1103/PhysRevB.81.064439
[8] N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011), doi:10.1103/PhysRevB.84.165139. · doi:10.1103/PhysRevB.84.165139
[9] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011), doi:10.1103/PhysRevB.83.035107. · doi:10.1103/PhysRevB.83.035107
[10] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry-protected topological orders in interacting bosonic systems, Science 338, 1604 (2012), doi:10.1126/science.1227224. · Zbl 1355.81189 · doi:10.1126/science.1227224
[11] Y.-M. Lu and A. Vishwanath, Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach, Phys. Rev. B 86, 125119 (2012), doi:10.1103/PhysRevB.86.125119. · doi:10.1103/PhysRevB.86.125119
[12] T. Senthil and M. Levin, Integer quantum Hall effect for bosons, Phys. Rev. Lett. 110, 046801 (2013), doi:10.1103/PhysRevLett.110.046801. · doi:10.1103/PhysRevLett.110.046801
[13] X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological or-ders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011), doi:10.1103/PhysRevB.84.235141. · doi:10.1103/PhysRevB.84.235141
[14] M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012), doi:10.1103/PhysRevB.86.115109. · doi:10.1103/PhysRevB.86.115109
[15] A. Vishwanath and T. Senthil, Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016 (2013), doi:10.1103/PhysRevX.3.011016. · doi:10.1103/PhysRevX.3.011016
[16] X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), doi:10.1103/PhysRevD.88.045013. · doi:10.1103/PhysRevD.88.045013
[17] L. Tsui, Y.-T. Huang and D.-H. Lee, A holographic theory for the phase transitions between fermionic symmetry-protected topological states, Nucl. Phys. B 949, 114799 (2019), doi:10.1016/j.nuclphysb.2019.114799. · Zbl 1435.82007 · doi:10.1016/j.nuclphysb.2019.114799
[18] O. I. Motrunich and A. Vishwanath, Emergent photons and transitions in the O(3) sigma model with hedgehog suppression, Phys. Rev. B 70, 075104 (2004), doi:10.1103/PhysRevB.70.075104. · doi:10.1103/PhysRevB.70.075104
[19] W.-T. Xu and G.-M. Zhang, Tensor network state approach to quantum topological phase transitions and their criticalities of 2 topologically ordered states, Phys. Rev. B 98, 165115 (2018), doi:10.1103/PhysRevB.98.165115. · doi:10.1103/PhysRevB.98.165115
[20] Y.-Z. You, Z. Bi, D. Mao and C. Xu, Quantum phase transitions between bosonic symmetry-protected topological states without sign problem: Nonlinear sigma model with a topolog-ical term, Phys. Rev. B 93, 125101 (2016), doi:10.1103/PhysRevB.93.125101. · doi:10.1103/PhysRevB.93.125101
[21] Y. You and Y.-Z. You, Stripe melting and a transition between weak and strong symmetry protected topological phases, Phys. Rev. B 93, 195141 (2016), doi:10.1103/PhysRevB.93.195141. · doi:10.1103/PhysRevB.93.195141
[22] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W. Sandvik, C. Xu and Z. Y. Meng, Dual-ity between the deconfined quantum-critical point and the bosonic topological transition, Phys. Rev. X 7, 031052 (2017), doi:10.1103/PhysRevX.7.031052. · doi:10.1103/PhysRevX.7.031052
[23] C.-M. Jian, A. Thomson, A. Rasmussen, Z. Bi and C. Xu, Deconfined quan-tum critical point on the triangular lattice, Phys. Rev. B 97, 195115 (2018), doi:10.1103/PhysRevB.97.195115. · doi:10.1103/PhysRevB.97.195115
[24] S. Jiang and O. Motrunich, Ising ferromagnet to valence bond solid transition in a one-dimensional spin chain: Analogies to deconfined quantum critical points, Phys. Rev. B 99, 075103 (2019), doi:10.1103/PhysRevB.99.075103. · doi:10.1103/PhysRevB.99.075103
[25] T. Senthil, D. T. Son, C. Wang and C. Xu, Duality between (2+1)d quantum critical points, Phys. Rep. 827, 1 (2019), doi:10.1016/j.physrep.2019.09.001. · doi:10.1016/j.physrep.2019.09.001
[26] B. Roberts, S. Jiang and O. I. Motrunich, Deconfined quantum critical point in one di-mension, Phys. Rev. B 99, 165143 (2019), doi:10.1103/PhysRevB.99.165143. · doi:10.1103/PhysRevB.99.165143
[27] R.-Z. Huang, D.-C. Lu, Y.-Z. You, Z. Y. Meng and T. Xiang, Emergent symmetry and conserved current at a one-dimensional incarnation of deconfined quantum critical point, Phys. Rev. B 100, 125137 (2019), doi:10.1103/PhysRevB.100.125137. · doi:10.1103/PhysRevB.100.125137
[28] Z. Bi and T. Senthil, Adventure in topological phase transitions in 3 + 1-d: Non-Abelian deconfined quantum criticalities and a possible duality, Phys. Rev. X 9, 021034 (2019), doi:10.1103/PhysRevX.9.021034. · doi:10.1103/PhysRevX.9.021034
[29] T.-S. Zeng, D. N. Sheng and W. Zhu, Continuous phase transition between bosonic integer quantum Hall liquid and a trivial insulator: Evidence for deconfined quantum criticality, Phys. Rev. B 101, 035138 (2020), doi:10.1103/PhysRevB.101.035138. · doi:10.1103/PhysRevB.101.035138
[30] S. Yang, D.-X. Yao and A. W. Sandvik, Deconfined quantum criticality in spin-1/2 chains with long-range interactions, (arXiv preprint) doi:10.48550/arXiv.2001.02821. · doi:10.48550/arXiv.2001.02821
[31] B. Roberts, S. Jiang and O. I. Motrunich, One-dimensional model for decon-fined criticality with 3 × 3 symmetry, Phys. Rev. B 103, 155143 (2021), doi:10.1103/PhysRevB.103.155143. · doi:10.1103/PhysRevB.103.155143
[32] C.-M. Jian, Y. Xu, X.-C. Wu and C. Xu, Continuous Néel-VBS quantum phase transition in non-local one-dimensional systems with SO(3) symmetry, SciPost Phys. 10, 033 (2021), doi:10.21468/SciPostPhys.10.2.033. · doi:10.21468/SciPostPhys.10.2.033
[33] W. Zheng, D. N. Sheng and Y.-M. Lu, Unconventional quantum phase transitions in a one-dimensional Lieb-Schultz-Mattis system, Phys. Rev. B 105, 075147 (2022), doi:10.1103/PhysRevB.105.075147. · doi:10.1103/PhysRevB.105.075147
[34] Y.-C. Wang, N. Ma, M. Cheng and Z. Y. Meng, Scaling of the disorder op-erator at deconfined quantum criticality, SciPost Phys. 13, 123 (2022), doi:10.21468/SciPostPhys.13.6.123. · doi:10.21468/SciPostPhys.13.6.123
[35] J. Zhao, Y.-C. Wang, Z. Yan, M. Cheng and Z. Y. Meng, Scaling of entanglement entropy at deconfined quantum criticality, Phys. Rev. Lett. 128, 010601 (2022), doi:10.1103/PhysRevLett.128.010601. · doi:10.1103/PhysRevLett.128.010601
[36] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009), doi:10.1103/PhysRevB.80.155131. · doi:10.1103/PhysRevB.80.155131
[37] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio and V. Vedral, Quantum phase tran-sition between cluster and antiferromagnetic states, Europhys. Lett. 95, 50001 (2011), doi:10.1209/0295-5075/95/50001. · doi:10.1209/0295-5075/95/50001
[38] T. Grover and A. Vishwanath, Quantum phase transition between integer quantum Hall states of bosons, Phys. Rev. B 87, 045129 (2013), doi:10.1103/PhysRevB.87.045129. · doi:10.1103/PhysRevB.87.045129
[39] Y.-M. Lu and D.-H. Lee, Quantum phase transitions between bosonic symmetry-protected topological phases in two dimensions: Emergent QE D 3 and anyon superfluid, Phys. Rev. B 89, 195143 (2014), doi:10.1103/PhysRevB.89.195143. · doi:10.1103/PhysRevB.89.195143
[40] J. H. Pixley, A. Shashi and A. H. Nevidomskyy, Frustration and multicritical-ity in the antiferromagnetic spin-1 chain, Phys. Rev. B 90, 214426 (2014), doi:10.1103/PhysRevB.90.214426. · doi:10.1103/PhysRevB.90.214426
[41] V. Lahtinen and E. Ardonne, Realizing All so(N ) 1 quantum criticalities in symmetry protected cluster models, Phys. Rev. Lett. 115, 237203 (2015), doi:10.1103/PhysRevLett.115.237203. · doi:10.1103/PhysRevLett.115.237203
[42] N. Chepiga, I. Affleck and F. Mila, Comment on “Frustration and multicritical-ity in the antiferromagnetic spin-1 chain”, Phys. Rev. B 94, 136401 (2016), doi:10.1103/physrevb.94.136401. · doi:10.1103/physrevb.94.136401
[43] Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z. Y. Meng and Z.-Y. Lu, Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states, Phys. Rev. B 93, 115150 (2016), doi:10.1103/PhysRevB.93.115150. · doi:10.1103/PhysRevB.93.115150
[44] L. Tsui, Y.-T. Huang, H.-C. Jiang and D.-H. Lee, The phase transitions between n × n bosonic topological phases in 1 + 1d, and a constraint on the central charge for the critical points between bosonic symmetry protected topological phases, Nucl. Phys. B 919, 470 (2017), doi:10.1016/j.nuclphysb.2017.03.021. · Zbl 1361.82018 · doi:10.1016/j.nuclphysb.2017.03.021
[45] Y.-Z. You, Y.-C. He, A. Vishwanath and C. Xu, From bosonic topological tran-sition to symmetric fermion mass generation, Phys. Rev. B 97, 125112 (2018), doi:10.1103/PhysRevB.97.125112. · doi:10.1103/PhysRevB.97.125112
[46] R. Verresen, R. Moessner and F. Pollmann, One-dimensional symmetry pro-tected topological phases and their transitions, Phys. Rev. B 96, 165124 (2017), doi:10.1103/PhysRevB.96.165124. · doi:10.1103/PhysRevB.96.165124
[47] R. Verresen, N. G. Jones and F. Pollmann, Topology and edge modes in quantum critical chains, Phys. Rev. Lett. 120, 057001 (2018), doi:10.1103/PhysRevLett.120.057001. · doi:10.1103/PhysRevLett.120.057001
[48] S. Ejima, T. Yamaguchi, F. H. L. Essler, F. Lange, Y. Ohta and H. Fehske, Exotic criticality in the dimerized spin-1 X X Z chain with single-ion anisotropy, SciPost Phys. 5, 059 (2018), doi:10.21468/SciPostPhys.5.6.059. · doi:10.21468/SciPostPhys.5.6.059
[49] T. Scaffidi, D. E. Parker and R. Vasseur, Gapless symmetry-protected topological order, Phys. Rev. X 7, 041048 (2017), doi:10.1103/PhysRevX.7.041048. · doi:10.1103/PhysRevX.7.041048
[50] D. E. Parker, T. Scaffidi and R. Vasseur, Topological Luttinger liquids from decorated do-main walls, Phys. Rev. B 97, 165114 (2018), doi:10.1103/PhysRevB.97.165114. · doi:10.1103/PhysRevB.97.165114
[51] D. E. Parker, R. Vasseur and T. Scaffidi, Topologically protected long edge co-herence times in symmetry-broken phases, Phys. Rev. Lett. 122, 240605 (2019), doi:10.1103/PhysRevLett.122.240605. · doi:10.1103/PhysRevLett.122.240605
[52] R. Verresen, R. Thorngren, N. G. Jones and F. Pollmann, Gapless topological phases and symmetry-enriched quantum criticality, Phys. Rev. X 11, 041059 (2021), doi:10.1103/PhysRevX.11.041059. · doi:10.1103/PhysRevX.11.041059
[53] S. Liu, H. Shapourian, A. Vishwanath and M. A. Metlitski, Magnetic impurities at quan-tum critical points: Large-N expansion and connections to symmetry-protected topological states, Phys. Rev. B 104, 104201 (2021), doi:10.1103/PhysRevB.104.104201. · doi:10.1103/PhysRevB.104.104201
[54] R. Thorngren, A. Vishwanath and R. Verresen, Intrinsically gapless topological phases, Phys. Rev. B 104, 075132 (2021), doi:10.1103/PhysRevB.104.075132. · doi:10.1103/PhysRevB.104.075132
[55] M. B. Hastings, How quantum are non-negative wavefunctions?, J. Math. Phys. 57, 015210 (2016), doi:10.1063/1.4936216. · Zbl 1334.81024 · doi:10.1063/1.4936216
[56] A. Smith, O. Golan and Z. Ringel, Intrinsic sign problems in topological quantum field theories, Phys. Rev. Res. 2, 033515 (2020), doi:10.1103/PhysRevResearch.2.033515. · doi:10.1103/PhysRevResearch.2.033515
[57] O. Golan, A. Smith and Z. Ringel, Intrinsic sign problem in fermionic and bosonic chiral topological matter, Phys. Rev. Res. 2, 043032 (2020), doi:10.1103/PhysRevResearch.2.043032. · doi:10.1103/PhysRevResearch.2.043032
[58] T. D. Ellison, K. Kato, Z.-W. Liu and T. H. Hsieh, Symmetry-protected sign problem and magic in quantum phases of matter, Quantum 5, 612 (2021), doi:10.22331/q-2021-12-28-612. · doi:10.22331/q-2021-12-28-612
[59] S. C. Morampudi, C. von Keyserlingk and F. Pollmann, Numerical study of a tran-sition between 2 topologically ordered phases, Phys. Rev. B 90, 035117 (2014), doi:10.1103/PhysRevB.90.035117. · doi:10.1103/PhysRevB.90.035117
[60] M. Dupont, S. Gazit and T. Scaffidi, From trivial to topological paramagnets: The case of 2 and 3 2 symmetries in two dimensions, Phys. Rev. B 103, 144437 (2021), doi:10.1103/PhysRevB.103.144437. · doi:10.1103/PhysRevB.103.144437
[61] M. Dupont, S. Gazit and T. Scaffidi, Evidence for deconfined U(1) gauge theory at the transition between toric code and double semion, Phys. Rev. B 103, L140412 (2021), doi:10.1103/PhysRevB.103.L140412. · doi:10.1103/PhysRevB.103.L140412
[62] N. Tantivasadakarn, R. Thorngren, A. Vishwanath and R. Verresen, Pivot Hamilto-nians as generators of symmetry and entanglement, SciPost Phys. 14, 012 (2023), doi:10.21468/SciPostPhys.14.2.012. · Zbl 07901052 · doi:10.21468/SciPostPhys.14.2.012
[63] N. Bultinck, UV perspective on mixed anomalies at critical points between bosonic symmetry-protected phases, Phys. Rev. B 100, 165132 (2019), doi:10.1103/PhysRevB.100.165132. · doi:10.1103/PhysRevB.100.165132
[64] B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016), doi:10.1103/PhysRevB.93.155131. · doi:10.1103/PhysRevB.93.155131
[65] R. J. Baxter and F. Y. Wu, Exact solution of an Ising model with three-spin interactions on a triangular lattice, Phys. Rev. Lett. 31, 1294 (1973), doi:10.1103/PhysRevLett.31.1294. · doi:10.1103/PhysRevLett.31.1294
[66] M. Rossi, M. Huber, D. Bruß and C. Macchiavello, Quantum hypergraph states, New J. Phys. 15, 113022 (2013), doi:10.1088/1367-2630/15/11/113022. · Zbl 1451.81103 · doi:10.1088/1367-2630/15/11/113022
[67] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M. P. A. Fisher, Quantum criti-cality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev. B 70, 144407 (2004), doi:10.1103/PhysRevB.70.144407. · doi:10.1103/PhysRevB.70.144407
[68] A. W. Sandvik, Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions, Phys. Rev. Lett. 98, 227202 (2007), doi:10.1103/PhysRevLett.98.227202. · doi:10.1103/PhysRevLett.98.227202
[69] A. W. Sandvik, Continuous quantum phase transition between an antiferromagnet and a valence-bond solid in two dimensions: Evidence for logarithmic corrections to scaling, Phys. Rev. Lett. 104, 177201 (2010), doi:10.1103/PhysRevLett.104.177201. · doi:10.1103/PhysRevLett.104.177201
[70] A. Nahum, P. Serna, J. T. Chalker, M. Ortuño and A. M. Somoza, Emergent SO(5) sym-metry at the Néel to valence-bond-solid transition, Phys. Rev. Lett. 115, 267203 (2015), doi:10.1103/PhysRevLett.115.267203. · doi:10.1103/PhysRevLett.115.267203
[71] R. G. Melko and R. K. Kaul, Scaling in the fan of an unconventional quantum critical point, Phys. Rev. Lett. 100, 017203 (2008), doi:10.1103/PhysRevLett.100.017203. · doi:10.1103/PhysRevLett.100.017203
[72] C. Wang, A. Nahum, M. A. Metlitski, C. Xu and T. Senthil, Deconfined quan-tum critical points: Symmetries and dualities, Phys. Rev. X 7, 031051 (2017), doi:10.1103/PhysRevX.7.031051. · doi:10.1103/PhysRevX.7.031051
[73] G. J. Sreejith, S. Powell and A. Nahum, Emergent SO(5) symmetry at the columnar or-dering transition in the classical cubic dimer model, Phys. Rev. Lett. 122, 080601 (2019), doi:10.1103/PhysRevLett.122.080601. · doi:10.1103/PhysRevLett.122.080601
[74] Z.-X. Li, S.-K. Jian and H. Yao, Deconfined quantum criticality and emergent SO(5) sym-metry in fermionic systems, (arXiv preprint) doi:10.48550/arXiv.1904.10975. · doi:10.48550/arXiv.1904.10975
[75] J. Takahashi and A. W. Sandvik, Valence-bond solids, vestigial order, and emergent SO(5) symmetry in a two-dimensional quantum magnet, Phys. Rev. Res. 2, 033459 (2020), doi:10.1103/PhysRevResearch.2.033459. · doi:10.1103/PhysRevResearch.2.033459
[76] Z. Wang, M. P. Zaletel, R. S. K. Mong and F. F. Assaad, Phases of the (2 + 1) dimensional SO(5) nonlinear sigma model with topological term, Phys. Rev. Lett. 126, 045701 (2021), doi:10.1103/PhysRevLett.126.045701. · doi:10.1103/PhysRevLett.126.045701
[77] T. Ogino, R. Kaneko, S. Morita, S. Furukawa and N. Kawashima, Continuous phase tran-sition between Néel and valence bond solid phases in a j-q-like spin ladder system, Phys. Rev. B 103, 085117 (2021), doi:10.1103/PhysRevB.103.085117. · doi:10.1103/PhysRevB.103.085117
[78] A. W. Sandvik, A. Avella and F. Mancini, Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135 (2010), doi:10.1063/1.3518900. · doi:10.1063/1.3518900
[79] A. W. Sandvik, Stochastic series expansion method, (arXiv preprint) doi:10.48550/arXiv.1909.10591. · doi:10.48550/arXiv.1909.10591
[80] A. W. Sandvik, Stochastic series expansion method for quantum Ising models with arbitrary interactions, Phys. Rev. E 68, 056701 (2003), doi:10.1103/PhysRevE.68.056701. · doi:10.1103/PhysRevE.68.056701
[81] H. W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation of the transverse Ising model, Phys. Rev. E 66, 066110 (2002), doi:10.1103/PhysRevE.66.066110. · doi:10.1103/PhysRevE.66.066110
[82] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su and A. Vichi, Bootstrapping Heisenberg magnets and their cubic instability, Phys. Rev. D 104, 105013 (2021), doi:10.1103/PhysRevD.104.105013. · doi:10.1103/PhysRevD.104.105013
[83] B. Nienhuis, A. N. Berker, E. K. Riedel and M. Schick, First-and second-order phase transitions in Potts models: Renormalization-group solution, Phys. Rev. Lett. 43, 737 (1979), doi:10.1103/PhysRevLett.43.737. · doi:10.1103/PhysRevLett.43.737
[84] M. Nauenberg and D. J. Scalapino, Singularities and scaling functions at the Potts-model multicritical point, Phys. Rev. Lett. 44, 837 (1980), doi:10.1103/PhysRevLett.44.837. · doi:10.1103/PhysRevLett.44.837
[85] J. L. Cardy, M. Nauenberg and D. J. Scalapino, Scaling theory of the Potts-model multi-critical point, Phys. Rev. B 22, 2560 (1980), doi:10.1103/PhysRevB.22.2560. · doi:10.1103/PhysRevB.22.2560
[86] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño and A. M. Somoza, Deconfined quantum criticality, scaling violations, and classical loop models, Phys. Rev. X 5, 041048 (2015), doi:10.1103/PhysRevX.5.041048. · doi:10.1103/PhysRevX.5.041048
[87] V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions, and complex CFTs, J. High Energy Phys. 10, 108 (2018), doi:10.1007/JHEP10(2018)108. · Zbl 1402.81220 · doi:10.1007/JHEP10(2018)108
[88] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, nu-merical techniques, and applications, Rev. Mod. Phys. 91, 015002 (2019), doi:10.1103/RevModPhys.91.015002. · doi:10.1103/RevModPhys.91.015002
[89] Y. Nakayama and T. Ohtsuki, Necessary condition for emergent symme-try from the conformal bootstrap, Phys. Rev. Lett. 117, 131601 (2016), doi:10.1103/PhysRevLett.117.131601. · doi:10.1103/PhysRevLett.117.131601
[90] F.-J. Jiang, M. Nyfeler, S. Chandrasekharan and U.-J. Wiese, From an antiferromagnet to a valence bond solid: Evidence for a first-order phase transition, J. Stat. Mech.: Theory Exp. P02009 (2008), doi:10.1088/1742-5468/2008/02/p02009. · doi:10.1088/1742-5468/2008/02/p02009
[91] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V. Svistunov and M. Troyer, Deconfined criticality: Generic first-order transition in the SU(2) symmetry case, Phys. Rev. Lett. 101, 050405 (2008), doi:10.1103/PhysRevLett.101.050405. · doi:10.1103/PhysRevLett.101.050405
[92] K. Chen, Y. Huang, Y. Deng, A. B. Kuklov, N. V. Prokof’ev and B. V. Svistunov, Deconfined criticality flow in the Heisenberg model with ring-exchange interactions, Phys. Rev. Lett. 110, 185701 (2013), doi:10.1103/PhysRevLett.110.185701. · doi:10.1103/PhysRevLett.110.185701
[93] H. Shao, W. Guo and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016), doi:10.1126/science.aad5007. · Zbl 1355.81166 · doi:10.1126/science.aad5007
[94] A. W. Sandvik and B. Zhao, Consistent scaling exponents at the deconfined quantum-critical point, Chin. Phys. Lett. 37, 057502 (2020), doi:10.1088/0256-307X/37/5/057502. · doi:10.1088/0256-307X/37/5/057502
[95] K. Chen, A. M. Ferrenberg and D. P. Landau, Static critical behavior of three-dimensional classical Heisenberg models: A high-resolution Monte Carlo study, Phys. Rev. B 48, 3249 (1993), doi:10.1103/PhysRevB.48.3249. · doi:10.1103/PhysRevB.48.3249
[96] M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormaliza-tion of φ 4 theory and critical exponents, Phys. Rev. D 96, 036016 (2017), doi:10.1103/PhysRevD.96.036016. · doi:10.1103/PhysRevD.96.036016
[97] L. T. Adzhemyan, E. V. Ivanova, M. V. Kompaniets, A. Kudlis and A. I. Sokolov, Six-loop ϵ expansion study of three-dimensional n-vector model with cubic anisotropy, Nucl. Phys. B 940, 332 (2019), doi:10.1016/j.nuclphysb.2019.02.001. · Zbl 1409.81071 · doi:10.1016/j.nuclphysb.2019.02.001
[98] Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs mod-els and persistent order, SciPost Phys. 6, 003 (2019), doi:10.21468/SciPostPhys.6.1.003. · doi:10.21468/SciPostPhys.6.1.003
[99] M. A. Metlitski and R. Thorngren, Intrinsic and emergent anomalies at deconfined critical points, Phys. Rev. B 98, 085140 (2018), doi:10.1103/PhysRevB.98.085140. · doi:10.1103/PhysRevB.98.085140
[100] E. Cobanera, G. Ortiz and Z. Nussinov, The bond-algebraic approach to dualities, Adv. Phys. 60, 679 (2011), doi:10.1080/00018732.2011.619814. · doi:10.1080/00018732.2011.619814
[101] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157. · doi:10.1103/PhysRevB.94.235157
[102] D. J. Williamson, Fractal symmetries: Ungauging the cubic code, Phys. Rev. B 94, 155128 (2016), doi:10.1103/PhysRevB.94.155128. · doi:10.1103/PhysRevB.94.155128
[103] B. Yoshida, Gapped boundaries, group cohomology and fault-tolerant logical gates, Ann. Phys. 377, 387 (2017), doi:10.1016/j.aop.2016.12.014. · Zbl 1368.81065 · doi:10.1016/j.aop.2016.12.014
[104] A. Kubica and B. Yoshida, Ungauging quantum error-correcting codes, (arXiv preprint) doi:10.48550/arXiv.1805.01836. · doi:10.48550/arXiv.1805.01836
[105] M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018), doi:10.1103/PhysRevB.98.115134. · doi:10.1103/PhysRevB.98.115134
[106] W. Shirley, K. Slagle and X. Chen, Foliated fracton order from gauging subsystem symme-tries, SciPost Phys. 6, 041 (2019), doi:10.21468/SciPostPhys.6.4.041. · doi:10.21468/SciPostPhys.6.4.041
[107] D. Radicevic, Systematic constructions of fracton theories, (arXiv preprint) doi:10.48550/arXiv.1910.06336. · doi:10.48550/arXiv.1910.06336
[108] N. Tantivasadakarn, Jordan-Wigner dualities for translation-invariant Hamiltonians in any dimension: Emergent fermions in fracton topological order, Phys. Rev. Res. 2, 023353 (2020), doi:10.1103/PhysRevResearch.2.023353. · doi:10.1103/PhysRevResearch.2.023353
[109] H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006), doi:10.1103/PhysRevLett.97.180501. · doi:10.1103/PhysRevLett.97.180501
[110] B. Yoshida, Topological color code and symmetry-protected topological phases, Phys. Rev. B 91, 245131 (2015), doi:10.1103/PhysRevB.91.245131. · doi:10.1103/PhysRevB.91.245131
[111] B. Yoshida, Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes, Ann. Phys. 326, 15 (2011), doi:10.1016/j.aop.2010.10.009. · Zbl 1213.81112 · doi:10.1016/j.aop.2010.10.009
[112] H. Bombín, Structure of 2D topological stabilizer codes, Commun. Math. Phys. 327, 387 (2014), doi:10.1007/s00220-014-1893-4. · Zbl 1292.81028 · doi:10.1007/s00220-014-1893-4
[113] A. Kubica, B. Yoshida and F. Pastawski, Unfolding the color code, New J. Phys. 17, 083026 (2015), doi:10.1088/1367-2630/17/8/083026. · Zbl 1454.81053 · doi:10.1088/1367-2630/17/8/083026
[114] J. Miller and A. Miyake, Hierarchy of universal entanglement in 2D measurement-based quantum computation, npj Quantum Inf. 2, 16036 (2016), doi:10.1038/npjqi.2016.36. · doi:10.1038/npjqi.2016.36
[115] T. Senthil and M. P. A. Fisher, Competing orders, nonlinear sigma models, and topological terms in quantum magnets, Phys. Rev. B 74, 064405 (2006), doi:10.1103/PhysRevB.74.064405. · doi:10.1103/PhysRevB.74.064405
[116] N. Tantivasadakarn and S. Vijay, Searching for fracton orders via symmetry defect con-densation, Phys. Rev. B 101, 165143 (2020), doi:10.1103/PhysRevB.101.165143. · doi:10.1103/PhysRevB.101.165143
[117] Y. You, T. Devakul, F. J. Burnell and S. L. Sondhi, Symmetric fracton matter: Twisted and enriched, Ann. Phys. 416, 168140 (2020), doi:10.1016/j.aop.2020.168140. · Zbl 1434.81163 · doi:10.1016/j.aop.2020.168140
[118] W. Shirley, K. Slagle and X. Chen, Twisted foliated fracton phases, Phys. Rev. B 102, 115103 (2020), doi:10.1103/PhysRevB.102.115103. · doi:10.1103/PhysRevB.102.115103
[119] T. Devakul, W. Shirley and J. Wang, Strong planar subsystem symmetry-protected topological phases and their dual fracton orders, Phys. Rev. Res. 2, 012059 (2020), doi:10.1103/PhysRevResearch.2.012059. · doi:10.1103/PhysRevResearch.2.012059
[120] W. Shirley, Fractonic order and emergent fermionic gauge theory, (arXiv preprint) doi:10.48550/arXiv.2002.12026. · doi:10.48550/arXiv.2002.12026
[121] Y. You, J. Bibo, F. Pollmann and T. L. Hughes, Fracton critical point at a higher-order topological phase transition, Phys. Rev. B 106, 235130 (2022), doi:10.1103/PhysRevB.106.235130. · doi:10.1103/PhysRevB.106.235130
[122] Y. You, J. Bibo, T. L. Hughes and F. Pollmann, Fractonic critical point proximate to a higher-order topological insulator: How does UV blend with IR?, (arXiv preprint) doi:10.48550/arXiv.2101.01724. · doi:10.48550/arXiv.2101.01724
[123] Z. Zhou, X.-F. Zhang, F. Pollmann and Y. You, Fractal quantum phase transitions: Critical phenomena beyond renormalization, (arXiv preprint) doi:10.48550/arXiv.2105.05851. · doi:10.48550/arXiv.2105.05851
[124] E. Lake and M. Hermele, Subdimensional criticality: Condensation of li-neons and planons in the X-cube model, Phys. Rev. B 104, 165121 (2021), doi:10.1103/PhysRevB.104.165121. · doi:10.1103/PhysRevB.104.165121
[125] R. G. Melko and A. W. Sandvik, Stochastic series expansion algorithm for the S = 1/2 X Y model with four-site ring exchange, Phys. Rev. E 72, 026702 (2005), doi:10.1103/PhysRevE.72.026702. · doi:10.1103/PhysRevE.72.026702
[126] H. Bombin and M. A. Martin-Delgado, Exact topological quantum order in D = 3 and beyond: Branyons and brane-net condensates, Phys. Rev. B 75, 075103 (2007), doi:10.1103/PhysRevB.75.075103. · doi:10.1103/PhysRevB.75.075103
[127] D. V. Else and C. Nayak, Cheshire charge in (3+1)-dimensional topological phases, Phys. Rev. B 96, 045136 (2017), doi:10.1103/PhysRevB.96.045136. · doi:10.1103/PhysRevB.96.045136
[128] M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn and G. Zhu, Codimension-2 defects and higher symmetries in (3 + 1)D topological phases, (arXiv preprint) doi:10.48550/arXiv.2208.07367. · doi:10.48550/arXiv.2208.07367
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.