×

Pivot Hamiltonians as generators of symmetry and entanglement. (English) Zbl 07901052

Summary: It is well-known that symmetry-protected topological (SPT) phases can be obtained from the trivial phase by an entangler, a finite-depth unitary operator \(U\). Here, we consider obtaining the entangler from a local ’pivot’ Hamiltonian \(H_{\mathrm{pivot}}\) such that \(U = e^{i\pi H_{\mathrm{pivot}}}\). This perspective of Hamiltonians pivoting between the trivial and SPT phase opens up two new directions: (i) Since SPT Hamiltonians and entanglers are now on the same footing, can we iterate this process to create other interesting states? (ii) Since entanglers are known to arise as discrete symmetries at SPT transitions, under what conditions can this be enhanced to \(U(1)\) pivot symmetry generated by \(H_{\mathrm{pivot}}\)? In this work we explore both of these questions. With regard to the first, we give examples of a rich web of dualities obtained by iteratively using an SPT model as a pivot to generate the next one. For the second question, we derive a simple criterion for when the direct interpolation between the trivial and SPT Hamiltonian has a \(U(1)\) pivot symmetry. We illustrate this in a variety of examples, assuming various forms for \(H_{\mathrm{pivot}}\), including the Ising chain, and the toric code Hamiltonian. A remarkable property of such a \(U(1)\) pivot symmetry is that it shares a mutual anomaly with the symmetry protecting the nearby SPT phase. We discuss how such anomalous and non-onsite \(U(1)\) symmetries explain the exotic phase diagrams that can appear, including an SPT multicritical point where the gapless ground state is given by the fixed-point toric code state.

MSC:

82Bxx Equilibrium statistical mechanics
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Vxx Applications of quantum theory to specific physical systems

References:

[1] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Iden-tification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464 (1983), doi:10.1016/0375-9601(83)90631-X. · doi:10.1016/0375-9601(83)90631-X
[2] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987), doi:10.1103/PhysRevLett.59.799. · doi:10.1103/PhysRevLett.59.799
[3] B. Zeng, X. Chen, D.-L. Zhou and X.-G. Wen, Quantum information meets quantum mat-ter: From quantum entanglement to topological phases of many-body systems, Springer, New York, US, ISBN 9781493990849 (2019), doi:10.1007/978-1-4939-9084-9. · Zbl 1423.81010 · doi:10.1007/978-1-4939-9084-9
[4] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011), doi:10.1103/PhysRevB.83.035107. · doi:10.1103/PhysRevB.83.035107
[5] F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010), doi:10.1103/PhysRevB.81.064439. · doi:10.1103/PhysRevB.81.064439
[6] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), doi:10.1103/PhysRevB.83.075103. · doi:10.1103/PhysRevB.83.075103
[7] N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011), doi:10.1103/PhysRevB.84.165139. · doi:10.1103/PhysRevB.84.165139
[8] Y.-M. Lu and A. Vishwanath, Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach, Phys. Rev. B 86, 125119 (2012), doi:10.1103/PhysRevB.86.125119. · doi:10.1103/PhysRevB.86.125119
[9] T. Senthil and M. Levin, Integer quantum Hall effect for bosons, Phys. Rev. Lett. 110, 046801 (2013), doi:10.1103/PhysRevLett.110.046801. · doi:10.1103/PhysRevLett.110.046801
[10] A. Vishwanath and T. Senthil, Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016 (2013), doi:10.1103/PhysRevX.3.011016. · doi:10.1103/PhysRevX.3.011016
[11] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry-protected topological orders in interacting bosonic systems, Science 338, 1604 (2012), doi:10.1126/science.1227224. · Zbl 1355.81189 · doi:10.1126/science.1227224
[12] M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012), doi:10.1103/PhysRevB.86.115109. · doi:10.1103/PhysRevB.86.115109
[13] D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014), doi:10.1103/PhysRevB.90.235137. · doi:10.1103/PhysRevB.90.235137
[14] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90, 115141 (2014), doi:10.1103/PhysRevB.90.115141. · doi:10.1103/PhysRevB.90.115141
[15] L. H. Santos, Rokhsar-Kivelson models of bosonic symmetry-protected topological states, Phys. Rev. B 91, 155150 (2015), doi:10.1103/PhysRevB.91.155150. · doi:10.1103/PhysRevB.91.155150
[16] S. D. Geraedts and O. I. Motrunich, Exact models for symmetry-protected topological phases in one dimension, (arXiv preprint) doi:10.48550/arXiv.1410.1580. · doi:10.48550/arXiv.1410.1580
[17] B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016), doi:10.1103/PhysRevB.93.155131. · doi:10.1103/PhysRevB.93.155131
[18] Y. Chen, A. Prakash and T.-C. Wei, Universal quantum computing using ( d ) 3 symmetry-protected topologically ordered states, Phys. Rev. A 97, 022305 (2018), doi:10.1103/PhysRevA.97.022305. · doi:10.1103/PhysRevA.97.022305
[19] N. Tantivasadakarn and A. Vishwanath, Full commuting projector Hamiltonians of in-teracting symmetry-protected topological phases of fermions, Phys. Rev. B 98, 165104 (2018), doi:10.1103/PhysRevB.98.165104. · doi:10.1103/PhysRevB.98.165104
[20] T. D. Ellison and L. Fidkowski, Disentangling interacting symmetry-protected phases of fermions in two dimensions, Phys. Rev. X 9, 011016 (2019), doi:10.1103/PhysRevX.9.011016. · doi:10.1103/PhysRevX.9.011016
[21] N. Tantivasadakarn and S. Vijay, Searching for fracton orders via symmetry defect con-densation, Phys. Rev. B 101, 165143 (2020), doi:10.1103/PhysRevB.101.165143. · doi:10.1103/PhysRevB.101.165143
[22] L. Fidkowski, J. Haah, M. B. Hastings and N. Tantivasadakarn, Disentangling the generalized double semion model, Commun. Math. Phys. 380, 1151 (2020), doi:10.1007/s00220-020-03890-2. · Zbl 1460.81091 · doi:10.1007/s00220-020-03890-2
[23] Y.-A. Chen, T. D. Ellison and N. Tantivasadakarn, Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions, Phys. Rev. Res. 3, 013056 (2021), doi:10.1103/PhysRevResearch.3.013056. · doi:10.1103/PhysRevResearch.3.013056
[24] L. Fidkowski, J. Haah and M. B. Hastings, Exactly solvable model for a 4 + 1D beyond-cohomology symmetry-protected topological phase, Phys. Rev. B 101, 155124 (2020), doi:10.1103/PhysRevB.101.155124. · doi:10.1103/PhysRevB.101.155124
[25] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio and V. Vedral, Quantum phase tran-sition between cluster and antiferromagnetic states, Europhys. Lett. 95, 50001 (2011), doi:10.1209/0295-5075/95/50001. · doi:10.1209/0295-5075/95/50001
[26] W. Son, L. Amico and V. Vedral, Topological order in 1D Cluster state protected by symme-try, Quantum Inf. Process. 11, 1961 (2011), doi:10.1007/s11128-011-0346-7. · Zbl 1263.81015 · doi:10.1007/s11128-011-0346-7
[27] R. Verresen, R. Moessner and F. Pollmann, One-dimensional symmetry pro-tected topological phases and their transitions, Phys. Rev. B 96, 165124 (2017), doi:10.1103/PhysRevB.96.165124. · doi:10.1103/PhysRevB.96.165124
[28] H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting parti-cles, Phys. Rev. Lett. 86, 910 (2001), doi:10.1103/PhysRevLett.86.910. · doi:10.1103/PhysRevLett.86.910
[29] X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), doi:10.1103/PhysRevD.88.045013. · doi:10.1103/PhysRevD.88.045013
[30] L. Tsui, Y.-T. Huang and D.-H. Lee, A holographic theory for the phase transitions between fermionic symmetry-protected topological states, Nucl. Phys. B 949, 114799 (2019), doi:10.1016/j.nuclphysb.2019.114799. · Zbl 1435.82007 · doi:10.1016/j.nuclphysb.2019.114799
[31] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009), doi:10.1103/PhysRevB.80.155131. · doi:10.1103/PhysRevB.80.155131
[32] T. Grover and A. Vishwanath, Quantum phase transition between integer quantum Hall states of bosons, Phys. Rev. B 87, 045129 (2013), doi:10.1103/PhysRevB.87.045129. · doi:10.1103/PhysRevB.87.045129
[33] Y.-M. Lu and D.-H. Lee, Quantum phase transitions between bosonic symmetry-protected topological phases in two dimensions: Emergent QED 3 and anyon superfluid, Phys. Rev. B 89, 195143 (2014), doi:10.1103/PhysRevB.89.195143. · doi:10.1103/PhysRevB.89.195143
[34] J. H. Pixley, A. Shashi and A. H. Nevidomskyy, Frustration and multicritical-ity in the antiferromagnetic spin-1 chain, Phys. Rev. B 90, 214426 (2014), doi:10.1103/PhysRevB.90.214426. · doi:10.1103/PhysRevB.90.214426
[35] V. Lahtinen and E. Ardonne, Realizing all SO(N ) 1 quantum criticalities in symmetry protected cluster models, Phys. Rev. Lett. 115, 237203 (2015), doi:10.1103/PhysRevLett.115.237203. · doi:10.1103/PhysRevLett.115.237203
[36] Y.-Z. You, Z. Bi, D. Mao and C. Xu, Quantum phase transitions between bosonic symmetry-protected topological states without sign problem: Nonlinear sigma model with a topolog-ical term, Phys. Rev. B 93, 125101 (2016), doi:10.1103/PhysRevB.93.125101. · doi:10.1103/PhysRevB.93.125101
[37] N. Chepiga, I. Affleck and F. Mila, Comment on “Frustration and multicritical-ity in the antiferromagnetic spin-1 chain”, Phys. Rev. B 94, 136401 (2016), doi:10.1103/physrevb.94.136401. · doi:10.1103/physrevb.94.136401
[38] Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z. Y. Meng and Z.-Y. Lu, Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states, Phys. Rev. B 93, 115150 (2016), doi:10.1103/PhysRevB.93.115150. · doi:10.1103/PhysRevB.93.115150
[39] L. Tsui, Y.-T. Huang, H.-C. Jiang and D.-H. Lee, The phase transitions between n × n bosonic topological phases in 1 + 1d, and a constraint on the central charge for the critical points between bosonic symmetry protected topological phases, Nucl. Phys. B 919, 470 (2017), doi:10.1016/j.nuclphysb.2017.03.021. · Zbl 1361.82018 · doi:10.1016/j.nuclphysb.2017.03.021
[40] Y.-Z. You, Y.-C. He, A. Vishwanath and C. Xu, From bosonic topological tran-sition to symmetric fermion mass generation, Phys. Rev. B 97, 125112 (2018), doi:10.1103/PhysRevB.97.125112. · doi:10.1103/PhysRevB.97.125112
[41] R. Verresen, N. G. Jones and F. Pollmann, Topology and edge modes in quantum critical chains, Phys. Rev. Lett. 120, 057001 (2018), doi:10.1103/PhysRevLett.120.057001. · doi:10.1103/PhysRevLett.120.057001
[42] S. Ejima, T. Yamaguchi, F. H. L. Essler, F. Lange, Y. Ohta and H. Fehske, Exotic criticality in the dimerized spin-1 X X Z chain with single-ion anisotropy, SciPost Phys. 5, 059 (2018), doi:10.21468/SciPostPhys.5.6.059. · doi:10.21468/SciPostPhys.5.6.059
[43] T. Scaffidi, D. E. Parker and R. Vasseur, Gapless symmetry-protected topological order, Phys. Rev. X 7, 041048 (2017), doi:10.1103/PhysRevX.7.041048. · doi:10.1103/PhysRevX.7.041048
[44] D. E. Parker, T. Scaffidi and R. Vasseur, Topological Luttinger liquids from decorated do-main walls, Phys. Rev. B 97, 165114 (2018), doi:10.1103/PhysRevB.97.165114. · doi:10.1103/PhysRevB.97.165114
[45] D. E. Parker, R. Vasseur and T. Scaffidi, Topologically protected long edge co-herence times in symmetry-broken phases, Phys. Rev. Lett. 122, 240605 (2019), doi:10.1103/PhysRevLett.122.240605. · doi:10.1103/PhysRevLett.122.240605
[46] R. Verresen, R. Thorngren, N. G. Jones and F. Pollmann, Gapless topological phases and symmetry-enriched quantum criticality, Phys. Rev. X 11, 041059 (2021), doi:10.1103/PhysRevX.11.041059. · doi:10.1103/PhysRevX.11.041059
[47] S. Liu, H. Shapourian, A. Vishwanath and M. A. Metlitski, Magnetic impurities at quan-tum critical points: Large-n expansion and connections to symmetry-protected topological states, Phys. Rev. B 104, 104201 (2021), doi:10.1103/PhysRevB.104.104201. · doi:10.1103/PhysRevB.104.104201
[48] M. Dupont, S. Gazit and T. Scaffidi, From trivial to topological paramagnets: The case of 2 and 3 2 symmetries in two dimensions, Phys. Rev. B 103, 144437 (2021), doi:10.1103/PhysRevB.103.144437. · doi:10.1103/PhysRevB.103.144437
[49] M. Dupont, S. Gazit and T. Scaffidi, Evidence for deconfined U(1) gauge theory at the transition between toric code and double semion, Phys. Rev. B 103, L140412 (2021), doi:10.1103/PhysRevB.103.L140412. · doi:10.1103/PhysRevB.103.L140412
[50] N. Tantivasadakarn, R. Thorngren, A. Vishwanath and R. Verresen, Building models of topological quantum criticality from pivot Hamiltonians, SciPost Phys. 14, 013 (2023), doi:10.21468/SciPostPhys.14.2.013. · Zbl 07901053 · doi:10.21468/SciPostPhys.14.2.013
[51] N. Bultinck, UV perspective on mixed anomalies at critical points between bosonic symmetry-protected phases, Phys. Rev. B 100, 165132 (2019), doi:10.1103/PhysRevB.100.165132. · doi:10.1103/PhysRevB.100.165132
[52] X. Chen, Y.-M. Lu and A. Vishwanath, Symmetry-protected topological phases from deco-rated domain walls, Nat. Commun. 5, 3507 (2014), doi:10.1038/ncomms4507. · doi:10.1038/ncomms4507
[53] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013), doi:10.1103/PhysRevB.87.155114. · doi:10.1103/PhysRevB.87.155114
[54] P.-S. Hsin, A. Kapustin and R. Thorngren, Berry phase in quantum field theory: Diabolical points and boundary phenomena, Phys. Rev. B 102, 245113 (2020), doi:10.1103/PhysRevB.102.245113. · doi:10.1103/PhysRevB.102.245113
[55] A. C. Potter and T. Morimoto, Dynamically enriched topological orders in driven two-dimensional systems, Phys. Rev. B 95, 155126 (2017), doi:10.1103/PhysRevB.95.155126. · doi:10.1103/PhysRevB.95.155126
[56] N. Tantivasadakarn and A. Vishwanath, Symmetric finite-time preparation of cluster states via quantum pumps, Phys. Rev. Lett. 129, 090501 (2022), doi:10.1103/PhysRevLett.129.090501. · doi:10.1103/PhysRevLett.129.090501
[57] R. J. Baxter and F. Y. Wu, Exact solution of an Ising model with three-spin interactions on a triangular lattice, Phys. Rev. Lett. 31, 1294 (1973), doi:10.1103/PhysRevLett.31.1294. · doi:10.1103/PhysRevLett.31.1294
[58] M. Suzuki, Relationship among exactly soluble models of critical phenomena. I, Prog. Theor. Phys. 46, 1337 (1971), doi:10.1143/PTP.46.1337. · Zbl 1098.82551 · doi:10.1143/PTP.46.1337
[59] J. P. Keating and F. Mezzadri, Random matrix theory and entanglement in quantum spin chains, Commun. Math. Phys. 252, 543 (2004), doi:10.1007/s00220-004-1188-2. · Zbl 1124.82009 · doi:10.1007/s00220-004-1188-2
[60] I. Peschel, On the entanglement entropy for an X Y spin chain, J. Stat. Mech.: Theor. Exp. P12005 (2004), doi:10.1088/1742-5468/2004/12/p12005. · Zbl 1073.82523 · doi:10.1088/1742-5468/2004/12/p12005
[61] M. M. Wolf, G. Ortiz, F. Verstraete and J. I. Cirac, Quantum phase tran-sitions in matrix product systems, Phys. Rev. Lett. 97, 110403 (2006), doi:10.1103/PhysRevLett.97.110403. · doi:10.1103/PhysRevLett.97.110403
[62] A. Smith, B. Jobst, A. G. Green and F. Pollmann, Crossing a topological phase transition with a quantum computer, Phys. Rev. Res. 4, L022020 (2022), doi:10.1103/PhysRevResearch.4.L022020. · doi:10.1103/PhysRevResearch.4.L022020
[63] N. G. Jones, J. Bibo, B. Jobst, F. Pollmann, A. Smith and R. Verresen, Skeleton of matrix-product-state-solvable models connecting topological phases of matter, Phys. Rev. Res. 3, 033265 (2021), doi:10.1103/PhysRevResearch.3.033265. · doi:10.1103/PhysRevResearch.3.033265
[64] E. Barouch and B. M. McCoy, Statistical mechanics of the X Y model. II. Spin-correlation functions, Phys. Rev. A 3, 786 (1971), doi:10.1103/PhysRevA.3.786. · doi:10.1103/PhysRevA.3.786
[65] J. Kurmann, H. Thomas and G. Müller, Antiferromagnetic long-range order in the anisotropic quantum spin chain, Phys. A: Stat. Mech. Appl. 112, 235 (1982), doi:10.1016/0378-4371(82)90217-5. · doi:10.1016/0378-4371(82)90217-5
[66] J. H. Taylor and G. Müller, Limitations of spin-wave theory in T = 0 spin dynamics, Phys. Rev. B 28, 1529 (1983), doi:10.1103/PhysRevB.28.1529. · doi:10.1103/PhysRevB.28.1529
[67] G. Müller and R. E. Shrock, Implications of direct-product ground states in the one-dimensional quantum X Y Z and X Y spin chains, Phys. Rev. B 32, 5845 (1985), doi:10.1103/PhysRevB.32.5845. · doi:10.1103/PhysRevB.32.5845
[68] M.-C. Chung and I. Peschel, Density-matrix spectra of solvable fermionic systems, Phys. Rev. B 64, 064412 (2001), doi:10.1103/PhysRevB.64.064412. · doi:10.1103/PhysRevB.64.064412
[69] F. Franchini, A. R. Its and V. E. Korepin, Renyi entropy of the X Y spin chain, J. Phys. A: Math. Theor. 41, 025302 (2007), doi:10.1088/1751-8113/41/2/025302. · Zbl 1189.82024 · doi:10.1088/1751-8113/41/2/025302
[70] M. E. J. Newman and C. Moore, Glassy dynamics and aging in an exactly solvable spin model, Phys. Rev. E 60, 5068 (1999), doi:10.1103/PhysRevE.60.5068. · doi:10.1103/PhysRevE.60.5068
[71] B. Yoshida, Topological color code and symmetry-protected topological phases, Phys. Rev. B 91, 245131 (2015), doi:10.1103/PhysRevB.91.245131. · doi:10.1103/PhysRevB.91.245131
[72] F. Pollmann and A. M. Turner, Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B 86, 125441 (2012), doi:10.1103/PhysRevB.86.125441. · doi:10.1103/PhysRevB.86.125441
[73] F. J. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Math. Phys. 12, 2259 (1971), doi:10.1063/1.1665530. · doi:10.1063/1.1665530
[74] H.-Q. Ding, Phase transition and thermodynamics of quantum X Y model in two dimen-sions, Phys. Rev. B 45, 230 (1992), doi:10.1103/PhysRevB.45.230. · doi:10.1103/PhysRevB.45.230
[75] M. Henkel, Statistical mechanics of the 2D quantum X Y model in a transverse field, J. Phys. A: Math. Gen. 17, L795 (1984), doi:10.1088/0305-4470/17/14/013. · doi:10.1088/0305-4470/17/14/013
[76] S. Trebst, P. Werner, M. Troyer, K. Shtengel and C. Nayak, Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension, Phys. Rev. Lett. 98, 070602 (2007), doi:10.1103/PhysRevLett.98.070602. · doi:10.1103/PhysRevLett.98.070602
[77] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev and P. C. E. Stamp, Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model, Phys. Rev. B 82, 085114 (2010), doi:10.1103/PhysRevB.82.085114. · doi:10.1103/PhysRevB.82.085114
[78] J. Vidal, R. Thomale, K. P. Schmidt and S. Dusuel, Self-duality and bound states of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009), doi:10.1103/PhysRevB.80.081104. · doi:10.1103/PhysRevB.80.081104
[79] K. Gregor, D. A. Huse, R. Moessner and S. L. Sondhi, Diagnosing deconfinement and topo-logical order, New J. Phys. 13, 025009 (2011), doi:10.1088/1367-2630/13/2/025009. · doi:10.1088/1367-2630/13/2/025009
[80] F. Wu, Y. Deng and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Phys. Rev. B 85, 195104 (2012), doi:10.1103/PhysRevB.85.195104. · doi:10.1103/PhysRevB.85.195104
[81] G.-Y. Zhu and G.-M. Zhang, Gapless Coulomb state emerging from a self-dual topological tensor-network state, Phys. Rev. Lett. 122, 176401 (2019), doi:10.1103/PhysRevLett.122.176401. · doi:10.1103/PhysRevLett.122.176401
[82] V. Popov, J. Niederle and L. Hlavatỳ, Functional integrals in quantum field theory and statistical physics, Springer, Dordrecht, Netherlands, ISBN 9781402003073 (1983). · Zbl 0518.28010
[83] D. S. Fisher and P. C. Hohenberg, Dilute Bose gas in two dimensions, Phys. Rev. B 37, 4936 (1988), doi:10.1103/PhysRevB.37.4936. · doi:10.1103/PhysRevB.37.4936
[84] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, UK, ISBN 9780521514682 (2011), doi:10.1017/CBO9780511973765. · Zbl 1233.82003 · doi:10.1017/CBO9780511973765
[85] C. Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac and D. Pérez-García, Gapless Hamiltonians for the toric code using the projected entangled pair state formalism, Phys. Rev. Lett. 109, 260401 (2012), doi:10.1103/PhysRevLett.109.260401. · doi:10.1103/PhysRevLett.109.260401
[86] C. Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac and D. Pérez-García, Frustra-tion free gapless Hamiltonians for matrix product states, Commun. Math. Phys. 333, 299 (2014), doi:10.1007/s00220-014-2173-z. · Zbl 1315.82003 · doi:10.1007/s00220-014-2173-z
[87] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202, 253 (1982), doi:10.1016/0550-3213(82)90071-2. · doi:10.1016/0550-3213(82)90071-2
[88] J. Wouters, H. Katsura and D. Schuricht, Interrelations among frustration-free models via Witten’s conjugation, SciPost Phys. Core 4, 027 (2021), doi:10.21468/SciPostPhysCore.4.4.027. · doi:10.21468/SciPostPhysCore.4.4.027
[89] J. I. Cirac, D. Pérez-García, N. Schuch and F. Verstraete, Matrix product states and pro-jected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93, 045003 (2021), doi:10.1103/RevModPhys.93.045003. · doi:10.1103/RevModPhys.93.045003
[90] P. Calabrese, A. Pelissetto and E. Vicari, The critical behavior of magnetic systems described by Landau-Ginzburg-Wilson field theories, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0306273. · doi:10.48550/arXiv.cond-mat/0306273
[91] H. Shao, W. Guo and A. W. Sandvik, Monte Carlo renormalization flows in the space of relevant and irrelevant operators: Application to three-dimensional clock models, Phys. Rev. Lett. 124, 080602 (2020), doi:10.1103/PhysRevLett.124.080602. · doi:10.1103/PhysRevLett.124.080602
[92] P. Ginsparg, Applied conformal field theory, in Fields, strings and critical phenomena, Les Houches 1988: Session 49, North-Holland Publishing, Amsterdam, the Netherlands, ISBN 9780444884404 (1990).
[93] E. Cobanera, G. Ortiz and Z. Nussinov, The bond-algebraic approach to dualities, Adv. Phys. 60, 679 (2011), doi:10.1080/00018732.2011.619814. · doi:10.1080/00018732.2011.619814
[94] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157. · doi:10.1103/PhysRevB.94.235157
[95] D. J. Williamson, Fractal symmetries: Ungauging the cubic code, Phys. Rev. B 94, 155128 (2016), doi:10.1103/PhysRevB.94.155128. · doi:10.1103/PhysRevB.94.155128
[96] B. Yoshida, Gapped boundaries, group cohomology and fault-tolerant logical gates, Ann. Phys. 377, 387 (2017), doi:10.1016/j.aop.2016.12.014. · Zbl 1368.81065 · doi:10.1016/j.aop.2016.12.014
[97] A. Kubica and B. Yoshida, Ungauging quantum error-correcting codes, (arXiv preprint) doi:10.48550/arXiv.1805.01836. · doi:10.48550/arXiv.1805.01836
[98] M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018), doi:10.1103/PhysRevB.98.115134. · doi:10.1103/PhysRevB.98.115134
[99] W. Shirley, K. Slagle and X. Chen, Foliated fracton order from gauging subsystem symme-tries, SciPost Phys. 6, 041 (2019), doi:10.21468/SciPostPhys.6.4.041. · doi:10.21468/SciPostPhys.6.4.041
[100] D. Radicevic, Systematic constructions of fracton theories, (arXiv preprint) doi:10.48550/arXiv.1910.06336. · doi:10.48550/arXiv.1910.06336
[101] N. Tantivasadakarn, Jordan-Wigner dualities for translation-invariant Hamiltonians in any dimension: Emergent fermions in fracton topological order, Phys. Rev. Res. 2, 023353 (2020), doi:10.1103/PhysRevResearch.2.023353. · doi:10.1103/PhysRevResearch.2.023353
[102] B. Braiorr-Orrs, M. Weyrauch and M. V. Rakov, Phase diagrams of one-, two-, and three-dimensional quantum spin systems, Quantum Inf. Comput. 16, 885 (2016), doi:10.26421/QIC16.9-10-9. · doi:10.26421/QIC16.9-10-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.