×

Ground state and orbital stability for the NLS equation on a general starlike graph with potentials. (English) Zbl 1373.35284

Summary: We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of \(\delta\)-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (\(L^2\)-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, \(H^1\) sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
35B32 Bifurcations in context of PDEs

References:

[1] Adami R, Cacciapuoti C, Finco D and Noja D 2011 Fast solitons on star graphs Rev. Math. Phys.23 409-51 · Zbl 1222.35182 · doi:10.1142/S0129055X11004345
[2] Adami R, Cacciapuoti C, Finco D and Noja D 2012 On the structure of critical energy levels for the cubic focusing NLS on star graphs J. Phys. A: Math. Theor.45 192001 · Zbl 1247.81104 · doi:10.1088/1751-8113/45/19/192001
[3] Adami R, Cacciapuoti C, Finco D and Noja D 2012 Stationary states of NLS on star graphs Europhys. Lett.100 10003 · doi:10.1209/0295-5075/100/10003
[4] Adami R, Cacciapuoti C, Finco D and Noja D 2014 Variational properties and orbital stability of standing waves for NLS equation on a star graph J. Differ. Equ.257 3738-77 · Zbl 1300.35129 · doi:10.1016/j.jde.2014.07.008
[5] Adami R, Cacciapuoti C, Finco D and Noja D 2014 Constrained energy minimization and orbital stability for the NLS equation on a star graph Ann. Inst. Henri Poincaré, Anal. Non Linear31 1289-310 · Zbl 1304.81087 · doi:10.1016/j.anihpc.2013.09.003
[6] Adami R, Cacciapuoti C, Finco D and Noja D 2016 Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy J. Differ. Equ.260 7397-415 · Zbl 1336.35316 · doi:10.1016/j.jde.2016.01.029
[7] Adami R and Noja D 2009 Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect J. Phys. A: Math. Theor.42 495302 · Zbl 1184.35290 · doi:10.1088/1751-8113/42/49/495302
[8] Adami R, Noja D and Visciglia N 2013 Constrained energy minimization and ground states for NLS with point defects Discrete Comput. Geom. B 18 1155-88 · Zbl 1280.35132
[9] Adami R, Serra E and Tilli P 2015 NLS ground states on graphs Calc. Var. PDEs54 743-61 · Zbl 1330.35484 · doi:10.1007/s00526-014-0804-z
[10] Adami R, Serra E and Tilli P 2016 Threshold phenomena and existence results for NLS ground states on metric graphs J. Func. Anal.271 201-23 · Zbl 1338.35448 · doi:10.1016/j.jfa.2016.04.004
[11] Adami R, Serra E and Tilli P 2017 Negative energy ground states for the L2-critical NLSE on metric graphs Commun. Math. Phys.352 387-406 · Zbl 1372.35319 · doi:10.1007/s00220-016-2797-2
[12] Adams R A and Fournier J J F 2003 Sobolev Spaces(Pure and Applied Mathematics Series vol 140) (Boston, MA: Academic) · Zbl 1098.46001
[13] Mehmeti F A, Ammari K and Nicaise S 2017 Dispersive effects for the Schrödinger equation on a tadpole graph J. Math. Anal. Appl.448 262-80 · Zbl 1357.35269 · doi:10.1016/j.jmaa.2016.10.060
[14] Banica V and Ignat L I 2011 Dispersion for the Schrödinger equation on networks J. Math. Phys.52 083703 · Zbl 1272.81079 · doi:10.1063/1.3629474
[15] Banica V and Ignat L I 2014 Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees Anal. PDE7 903-27 · Zbl 1297.35200 · doi:10.2140/apde.2014.7.903
[16] Berkolaiko G and Kuchment P 2013 Introduction to Quantum Graphs(Mathematical Surveys and Monographs vol 186) (Providence, RI: American Mathematical Society) · Zbl 1318.81005
[17] Berkolaiko G and Liu W 2017 Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph J. Math. Anal. Appl.455 803-818 · Zbl 1348.81243 · doi:10.1016/j.jmaa.2016.07.026
[18] Cacciapuoti C, Finco D and Noja D 2015 Topology induced bifurcations for the NLS on the tadpole graph Phys. Rev. E 91 013206 · doi:10.1103/PhysRevE.91.013206
[19] Cazenave T 2003 Semilinear Schrödinger Equations(Courant Lecture Notes in Mathematics vol 10) (Providence, RI: American Mathematical Society) · Zbl 1055.35003 · doi:10.1090/cln/010
[20] Cazenave T 2006 An Introduction to Semilinear Elliptic Equations (Rio de Janeiro: IM-UFRJ)
[21] Cazenave T and Lions P-L 1982 Orbital stability of standing waves for some nonlinear Schrödinger equations Commun. Math. Phys.85 549-61 · Zbl 0513.35007 · doi:10.1007/BF01403504
[22] Exner P and Jex M 2012 On the ground state of quantum graphs with attractive δ-coupling Phys. Lett. A 376 713-7 · Zbl 1255.81160 · doi:10.1016/j.physleta.2011.12.035
[23] Gilbarg D and Trudinger N 2001 Elliptic Partial Differential Equations of Second Order (Berlin: Springer) · Zbl 1042.35002
[24] Haeseler S 2011 Heat kernel estimates and related inequalities on metric graphs (arXiv:1101.3010v1)
[25] Keller M, Lenz D, Vogt H and Wojciechowski R 2015 Note on basic features of large time behaviour of heat kernels J. Reine Angew. Math.708 73-95 · Zbl 1369.58017 · doi:10.1515/crelle-2013-0070
[26] Kirr E, Kevrekidis P G and Pelinovsky D E 2011 Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials Commun. Math. Phys.308 795-844 · Zbl 1235.34128 · doi:10.1007/s00220-011-1361-3
[27] Kostrykin V and Schrader R 1999 Kirchhoff’s rule for quantum wires J. Phys. A: Math. Gen.32 595-630 · Zbl 0928.34066 · doi:10.1088/0305-4470/32/4/006
[28] Lieb E H and Loss M 2001 Analysis(Graduate Studies in Mathematics vol 14) 2nd edn (Providence, RI: American Mathematical Society) · Zbl 0966.26002 · doi:10.1090/gsm/014
[29] Marzuola J and Pelinovsky D E 2016 Ground states on the dumbbell graph Appl. Math. Res. Express 98-145 · Zbl 1345.35105 · doi:10.1093/amrx/abv011
[30] Mugnolo D 2014 Semigroup Methods for Evolution Equations on Networks (Berlin: Springer) · Zbl 1306.47001 · doi:10.1007/978-3-319-04621-1
[31] Noja D, Pelinovsky D and Shaikhova G 2015 Bifurcation and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph Nonlinearity28 2343-78 · Zbl 1328.35216 · doi:10.1088/0951-7715/28/7/2343
[32] Pelinovsky D E and Schneider G 2017 Bifurcations of standing localized waves on periodic graphs Ann. Henri Poincaré18 1185-211 · Zbl 1387.35556 · doi:10.1007/s00023-016-0536-z
[33] Reed M and Simon B 1978 Methods of Modern Mathematical Physics(Analysis of Operators) (London: Academic) · Zbl 0401.47001
[34] Reed M and Simon B 1978 Methods of Modern Mathematical Physics(Analysis of Operators) (London: Academic) · Zbl 0401.47001
[35] Segal I 1963 Non-linear semi-groups Ann. Math.78 339-64 · Zbl 0204.16004 · doi:10.2307/1970347
[36] Stuart C A 2006 Uniqueness and stability of ground states for some nonlinear Schrödinger equations J. Eur. Math. Soc.8 399-414 · Zbl 1245.35120 · doi:10.4171/JEMS/60
[37] Sobirov Z, Matrasulov D, Sabirov K, Sawada S and Nakamura K 2010 Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices Phys. Rev. E 81 066602 · doi:10.1103/PhysRevE.81.066602
[38] Sabirov K K, Sobirov Z A, Babajanov D and Matrasulov D U 2013 Stationary nonlinear Schrödinger equation on simplest graphs Phys. Lett. A 377 860-5 · Zbl 1298.35236 · doi:10.1016/j.physleta.2013.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.