×

Stability properties of standing waves for NLS equations with the \(\delta^\prime\)-interaction. (English) Zbl 1490.35389

Summary: We study the orbital stability of standing waves with discontinuous bump-like profile for the nonlinear Schrödinger model with the repulsive \(\delta^\prime\)-interaction on the line. We consider the model with power non-linearity. In particular, it is shown that such standing waves are unstable in the energy space under some restrictions for parameters. The use of extension theory of symmetric operators by Krein-von Neumann is fundamental for estimating the Morse index of self-adjoint operators associated with our stability study. Moreover, for this purpose we use Sturm oscillation results and analytic perturbation theory. The Perron-Frobenius property for the repulsive \(\delta^\prime \)-interaction is established.
The arguments presented in this investigation have prospects for the study of the stability of stationary waves solutions of other nonlinear evolution equations with point interactions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B20 Perturbations in context of PDEs
35B35 Stability in context of PDEs
37B30 Index theory for dynamical systems, Morse-Conley indices
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI

References:

[1] Agrawal, G., Nonlinear Fiber Optic (2001), Academic Press
[2] Avron, J. E.; Exner, P.; Last, Y., Periodic Schrödinger operators with large gaps and Wannier-Stark ladders, Phys. Rev. Lett., 72, 896-899 (1994) · Zbl 0942.34503
[3] Brazhnyi, V. A.; Konotop, V. V., Theory of nonlinear matter waves in optical lattices, Modern Phys. Lett. B, 18, 627-651 (2004) · Zbl 1099.35524
[4] Cao, X. D.; Malomed, B. A., Soliton-defect collisions in the nonlinear Schrödinger equation, Phys. Lett. A, 206, 3-4, 177-182 (1995) · Zbl 1020.78505
[5] Fidaleo, F., Harmonic analysis on inhomogeneous amenable networks and the Bose-Einstein condensation, J. Stat. Phys., 160, 715-759 (2015) · Zbl 1362.82053
[6] Kuchment, P., Quantum graphs. I. Some basic structures, Waves Random Media, 14, 1, S107-S128 (2004) · Zbl 1063.81058
[7] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations, 257, 10, 3738-3777 (2014) · Zbl 1300.35129
[8] Adami, R.; Noja, D., Stability and symmetry-breaking bifurcation for the ground states of a NLS with a \(\delta^\prime\) interaction, Comm. Math. Phys., 318, 1, 247-289 (2013) · Zbl 1260.35194
[9] Adami, R.; Noja, D.; Visciglia, N., Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18, 5, 1155-1188 (2013) · Zbl 1280.35132
[10] Adami, R.; Noja, D., Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect, J. Phys. A, 42, Article 495302 pp. (2009), 19 pp · Zbl 1184.35290
[11] Adami, R.; Noja, D.; Sacchetti, A., On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects, (Bose-Einstein Condensates: Theory, Characteristics, and Current Research (2010), Nova Publishing: Nova Publishing New York)
[12] Dell’Antonio, G.; Michelangeli, A., (Quantum Mechanics: Contemporary Trends and Open Problems. Quantum Mechanics: Contemporary Trends and Open Problems, Springer INdAM Series, vol. 18 (2017)) · Zbl 1378.81009
[13] Ardila, A. H., Stability of ground states for logarithmic Schrödinger equation with a \(\delta^\prime\) interaction, Evol. Equ. Control Theory, 6, 2, 735-762 (2017) · Zbl 1413.76016
[14] Angulo, J., Instability of cnoidal-peak for the NLS-\( \delta \)-equation, Math. Nachr., 285, 13, 1572-1602 (2012) · Zbl 1326.81059
[15] Angulo, J.; Ardila, A. H., Stability of standing waves for logarithmic Schrödinger equation with attractive delta potencial, Indiana Univ. Math. J., 67, 2, 471-494 (2018) · Zbl 1442.35428
[16] Angulo, J.; Goloshchapova, N., Extension theory approach in stability of standing waves for NLS equation with point interactions, Adv. Differential Equations, 23, 11-12, 793-846 (2018) · Zbl 1402.35261
[17] Angulo, J.; Goloshchapova, N., Stability of standing waves for NLS-log equation with \(\delta \)-interaction, NoDEA Nonlinear Differential Equations Appl., 24, 3, 1-23 (2017) · Zbl 1375.35433
[18] Angulo, J.; Hernandez Melo, C.; Plaza, R., Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity, J. Math. Phys., 60, Article 071501 pp. (2019) · Zbl 1416.81053
[19] Angulo, J.; Ponce, G., The non-linear Schrödinger equation with a periodic \(\delta \)-interaction, Bull. Braz. Math. Soc. (N.S.), 44, 3, 497-551 (2013) · Zbl 1274.76175
[20] Banica, V.; Visciglia, N., Scattering for NLS with a delta potential, J. Differential Equations, 260, 4410-4439 (2016) · Zbl 1342.35200
[21] Caudrelier, V.; Mintchev, M.; Ragoucy, E., Solving the quantum nonlinear Schrödinger equation with \(\delta \)-type impurity, J. Math. Phys., 46, 4, Article 042703 pp. (2005), 24 pp · Zbl 1067.81023
[22] Deift, P.; Park, J., Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial aata, Int. Math. Res. Not., 24, 5505-5624 (2011) · Zbl 1251.35145
[23] Datchev, K.; Holmer, J., Fast soliton scattering by attractive delta impurities, Comm. Partial Differential Equations, 3, 1074-1173 (2009) · Zbl 1194.35403
[24] Le Coz, S.; Fukuizumi, R.; Fibich, G.; Ksherim, B.; Sivan, Y., Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237, 8, 1103-1128 (2008) · Zbl 1147.35356
[25] Fukuizumi, R.; Ohta, M.; Ozawa, T., Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 5, 837-845 (2008) · Zbl 1145.35457
[26] Fukuizumi, R.; Jeanjean, L., Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst., 21, 1, 121-136 (2008) · Zbl 1144.35465
[27] Goodman, R. H.; Holmes, P. J.; Weinstein, M. I., Strong NLS soliton-defect interactions, Physica D, 192, 3-4, 215-248 (2004) · Zbl 1061.35132
[28] Holmer, J.; Marzuola, J.; Zworski, M., Fast soliton scattering by delta impurities, Comm. Math. Phys., 274, 1, 187-216 (2007) · Zbl 1126.35068
[29] Holmer, J.; Marzuola, J.; Zworski, M., Soliton splitting by external delta potentials, J. Nonlinear Sci., 17, 4, 349-367 (2007) · Zbl 1128.35384
[30] Ikeda, M.; Inui, T., Global dynamics below the standing waves for the focusing semilinear Schrödinger equation with a repulsive Dirac delta potential, Anal. PDE, 10, 2, 481-512 (2017) · Zbl 1365.35156
[31] Jackson, R. K.; Weinstein, M. I., Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation, J. Stat. Phys., 116, 881-905 (2004) · Zbl 1138.81015
[32] Kaminaga, M.; Ohta, M., Stability of standing waves for nonlinear Schrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26, 39-48 (2009) · Zbl 1191.35254
[33] Duchêne, V.; Marzuola, J. L.; Weinstein, M. I., Wave operator bounds for 1-dimensional Schrödinger operators with singular potentials and applications, J. Math. Phys., 52, 1, 3505-013505 (2011) · Zbl 1314.81085
[34] Aschbacher, W. H.; Fröhlich, J.; Graf, G. M.; Schnee, K.; Troyer, M., Symmetry breaking regime in the nonlinear hartree equation, J. Math. Phys., 43, 3879-3891 (2002) · Zbl 1060.81012
[35] Jeanjean, H.; Stuart, C., Nonlinear eigenvalue problems having an unbounded branch of symmetric bound states, Adv. Difference Equ., 4, 639-670 (1999) · Zbl 0958.34017
[36] Kirr, E. W.; Kevrekidis, P. G.; Shlizerman, E.; Weinstein, M. I., Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross-Pitaevskii equations, SIAM J. Math. Anal., 40, 56-604 (2008) · Zbl 1157.35479
[37] Kirr, E. W.; Kevrekidis, P. G.; Pelinovsky, D. E., Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308, 795-844 (2011) · Zbl 1235.34128
[38] Marzuola, J. L.; Weinstein, M. I., Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations, Discr. Cont. Dynam. Syst. A, 28, 1505-1554 (2010) · Zbl 1223.35288
[39] Rose, H. A.; Weinstein, M. I., On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, 30, 207-218 (1988) · Zbl 0694.35202
[40] Carretero-González, R.; Frantzeskakis, D. J.; Kevrekidis, P. G., Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques, Nonlinearity, 21, R139-R202 (2008) · Zbl 1216.82023
[41] Pethick, C. J.; Smith, H., Bose-Einstein Condensation in Dilute Gases (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1031.01006
[42] Pitaevskii, L. P.; Stringari, S., Bose-Einstein Condensation (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1110.82002
[43] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light (2008), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1144.78303
[44] Kevrekidis, P. G.; Chen, Z.; Malomed, B. A.; Frantzeskakis, D. J.; Weinstein, M. I., Spontaneous symmetry breaking in photonic lattices : Theory and experiment, Phys. Lett. A, 340, 275-280 (2005) · Zbl 1145.78310
[45] Kivshar, Yu. S.; Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press: Academic Press San Diego, CA
[46] Menyuk, C. R., Soliton robustness in optical fibers, J. Opt. Soc. Amer. B, 10, 9, 1585-1591 (1993)
[47] Moloney, J.; Newell, A., (Nonlinear Optics. Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences (1992), Addison-Wesley: Addison-Wesley Redwood City, CA)
[48] Sakaguchi, H.; Tamura, M., Scattering and trapping of nonlinear Schrödinger solitons in external potentials, J. Phys. Soc. Japan, 73, 3, 503-506 (2004)
[49] Seaman, B. T.; Carr, L. D.; Holland, M. J., Effect of a potential step or impurity on the Bose-Einstein condensate mean field, Phys. Rev. A, 71, Article 033602 pp. (2005)
[50] Ohta, M., Instability of bound states for abstract nonlinear Schrödinger equations, J. Funct. Anal., 261, 1, 90-110 (2011) · Zbl 1228.34092
[51] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94, 2, 308-348 (1990) · Zbl 0711.58013
[52] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74, 1, 160-197 (1987) · Zbl 0656.35122
[53] Cazenave, T., (Semilinear Schrödinger Equations. Semilinear Schrödinger Equations, Lecture Notes, vol. 10 (2003), American Mathematical Society, AMS) · Zbl 1055.35003
[54] Albeverio, S.; Brzezniak, Z.; Dabrowski, L., Fundamental solution of the heat and Schrödinger equations with point interaction, J. Funct. Anal., 130, 1, 220-254 (1995) · Zbl 0822.35002
[55] Linares, F.; Ponce, G., (Introduction to Nonlinear Dispersive Equations. Introduction to Nonlinear Dispersive Equations, Universitext (2009), Springer: Springer New York) · Zbl 1178.35004
[56] Georgiev, V.; Ohta, M., Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations, Math. Soc. Japan, 64, 533-548 (2012) · Zbl 1253.35158
[57] Henry, D.; Perez, J. F.; Wreszinski, W., Stability theory for solitary-wave solutions of scalar eld equation, Comm. Math. Phys., 85, 351-361 (1982) · Zbl 0546.35062
[58] Angulo, J.; Natali, F., On the instability of periodic waves for dispersive equations, Differential Integral Equations, 29, 9/10, 837-874 (2016) · Zbl 1374.76035
[59] Angulo, J.; Neves, A.; Lopes, O., Instability of travelling waves for weakly coupled KDV systems, Nonlinear Anal. TMA, 69, 1870-1887 (2008) · Zbl 1152.35097
[60] Berezin, F. A.; Shubin, M. A., (The Schrödinger Equation. The Schrödinger Equation, Mathematics and its Applications (Soviet Series), vol. 66 (1991), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), translated from the 1983 Russian edition by Yu. Rajabov, D.A. Leĭtes and N. A. Sakharova and revised by Shubin · Zbl 0749.35001
[61] Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin · Zbl 0148.12601
[62] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, Vol. IV. Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators (1978), Academic Press: Academic Press New York) · Zbl 0401.47001
[63] Albeverio, S.; Gesztesy, F.; Hoegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2005), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 1078.81003
[64] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1992), Dover: Dover New York
[65] Naimark, M. A., Linear Differential Operators (1969), Izdat. “Nauka”: Izdat. “Nauka” Moscow, (in Russian) · Zbl 0193.04101
[66] Albeverio, S.; Kurasov, P., (Singular Perturbations of Differential Operators. Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series, vol. 271 (2000), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0945.47015
[67] Albert, J. P.; Bona, J. L.; Henry, D. B., Sufficient conditions for stability of solitary-wave solutions of model equations for long waves, Physica D, 24, 343-366 (1987) · Zbl 0634.35079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.