×

Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias. (English) Zbl 1489.92190

Summary: One of the most important vector-borne disease in humans is malaria, caused by Plasmodium parasite. Seasonal temperature elements have a major effect on the life development of mosquitoes and the development of parasites. In this paper, we establish and analyze a reaction-diffusion model, which includes seasonality, vector-bias, temperature-dependent extrinsic incubation period (EIP) and maturation delay in mosquitoes. In order to get the model threshold dynamics, a threshold parameter, the basic reproduction number \(R_0\) is introduced, which is the spectral radius of the next generation operator. Quantitative analysis indicates that when \(R_0 < 1\), there is a globally attractive disease-free \(\omega\)-periodic solution; disease is uniformly persistent in humans and mosquitoes if \(R_0 > 1\). Numerical simulations verify the results of the theoretical analysis and discuss the effects of diffusion and seasonality. We study the relationship between the parameters in the model and \(R_0\). More importantly, how to allocate medical resources to reduce the spread of disease is explored through numerical simulations. Last but not least, we discover that when studying malaria transmission, ignoring vector-bias or assuming that the maturity period is not affected by temperature, the risk of disease transmission will be underestimate.

MSC:

92D30 Epidemiology
35K57 Reaction-diffusion equations

References:

[1] <i>Centers for disease control and prevention</i>. Available from: <a href=“https://www.cdc.gov/malaria/malaria-worldwide/impact.html” target=“_blank”>https://www.cdc.gov/malaria/malaria-worldwide/impact.html</a>.
[2] R, An application of the theory of probabilities to the study of a priori pathometry, Part I, Proc. R. Soc. Lond. A, 92, 204-230 (1916) · JFM 46.0789.01 · doi:10.1098/rspb.1917.0008
[3] G, The analysis of equilibrium in malaria, Trop. Dis. Bull., 49, 813-829 (1952)
[4] S, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70, 1098-1114 (2008) · Zbl 1142.92040 · doi:10.1007/s11538-007-9292-z
[5] T, Spatial heterogeneity and the persistence of infectious diseases, J. Theor. Biol., 229, 349-359 (2004) · Zbl 1440.92064 · doi:10.1016/j.jtbi.2004.04.002
[6] J, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259, 5486-5509 (2015) · Zbl 1341.35171 · doi:10.1016/j.jde.2015.06.035
[7] V. Capasso, <i>Mathematical structures of epidemic systems</i>, Springer, 2008. · Zbl 1141.92035
[8] J, Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401 · doi:10.1007/BF02464427
[9] J. D. Murray, <i>Mathematical Biology</i>, Springer-Verlag, 1989. · Zbl 0682.92001
[10] D, Progress in modelling malaria transmission, Adv. Exp. Med. Biol., 673, 1-12 (2010) · doi:10.1007/978-1-4419-6064-1_1
[11] S, Mathematical models of malaria-a review, Malaria J., 10, 202 (2011) · doi:10.1186/1475-2875-10-202
[12] R, Malaria infection increases attractiveness of humans to mosquitoes, PLoS Biol., 3, e298 (2005) · doi:10.1371/journal.pbio.0030298
[13] F, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73, 639-657 (2011) · Zbl 1225.92030 · doi:10.1007/s11538-010-9545-0
[14] S, Analysis of a vector-bias effect in the spread of malaria between two different incidence areas, J. Theor. Biol., 419, 66-76 (2017) · Zbl 1370.92163 · doi:10.1016/j.jtbi.2017.02.005
[15] B, Stability and bifurcation analysis of a vector-bias model of malaria transmission, Math. Biosci., 242, 59-67 (2013) · Zbl 1316.92081 · doi:10.1016/j.mbs.2012.12.001
[16] E, Analysis of a vector-bias malaria transmission model with application to Mexico, Sudan and Democratic Republic of the Congo, J. Theor. Biol., 72-84 (2019) · Zbl 1461.92118 · doi:10.1016/j.jtbi.2018.12.033
[17] P. Jones, C. Harpham, C. Kilsbyet, Projections of future daily climate for the UK from the weather generator, <i>UK climate projections science report</i>, 2009.
[18] A, The effect of temperature on life history traits of Culex mosquitoes, J. Med. Entomol., 51, 55-62 (2014) · doi:10.1603/ME13003
[19] Y, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70, 2023-2044 (2010) · Zbl 1221.34224 · doi:10.1137/080744438
[20] X, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77, 181-201 (2017) · Zbl 1401.35188 · doi:10.1137/15M1046277
[21] V, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures, J. Nat. Hist., 45, 2203-2213 (2011) · doi:10.1080/00222933.2011.590946
[22] Y, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27, 573-603 (2017) · Zbl 1384.37116 · doi:10.1007/s00332-016-9344-3
[23] D, Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes, J. Theor. Biol., 400, 65-79 (2016) · Zbl 1343.92405 · doi:10.1016/j.jtbi.2016.04.008
[24] R, A reaction-diffusion model of vector-borne disease with periodic delays, J. Nolinear Sci., 29, 29-64 (2019) · Zbl 1411.35170 · doi:10.1007/s00332-018-9475-9
[25] K, Analysis of an age structured model for tick populations subject to seasonal effects, J. Differ. Equations, 2078-2112 (2017) · Zbl 1369.35099 · doi:10.1016/j.jde.2017.03.038
[26] X, Stage-structured population systems with temporally periodic delay, Math. Meth. Appl. Sci., 38, 3464-3481 (2015) · Zbl 1336.34118 · doi:10.1002/mma.3424
[27] J. A. J. Metz, O. Diekmann, <i>The dynamics of physiologically structured populations</i>, Springer-Verlag, 1986. · Zbl 0614.92014
[28] J, Global threshold dynamics of an infection age-space structured HIV infection model with neumann boundary condition, J. Dyn. Diff. Equat., 1-33 (2021) · Zbl 1522.35523 · doi:10.1007/s10884-021-10086-2
[29] Z, A reaction-diffusion malaria model with seasonality and incubation period, J. Math. Biol., 77, 201-228 (2018) · Zbl 1390.35145 · doi:10.1007/s00285-017-1193-7
[30] R. S. Cantrell, C. Cosner, <i>Spatial ecology via reaction-diffusion equations</i>, John Wiley and Sons, 2003. · Zbl 1059.92051
[31] P. Turchin, <i>Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants</i>, Sinauer Associates, 1998.
[32] X. Q. Zhao, <i>Dynamical systems in population biology</i>, Springer-Verlag, 2017.
[33] Y, Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias, J. Math. Biol., 82 (2021) · Zbl 1462.35419 · doi:10.1007/s00285-021-01577-3
[34] D. Daners, P. Medina, <i>Abstract evolution equations, periodic problems and applications</i>, Longman Scientific and Technical, 1992. · Zbl 0789.35001
[35] H. L. Smith, <i>Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems</i>, American Mathematical Society, 2005.
[36] R, Abstract functional differential equations and reaction-diffusion systems, T. Am. Math. Soc., 321, 1-44 (1990) · Zbl 0722.35046 · doi:10.2307/2001590
[37] J. Wu, <i>Theory and applications of partial functional differential equations</i>, Springer, 1996. · Zbl 0870.35116
[38] L, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differ. Equations, 258, 3011-3036 (2015) · Zbl 1408.35088 · doi:10.1016/j.jde.2014.12.032
[39] H, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70, 188-211 (2009) · Zbl 1191.47089 · doi:10.1137/080732870
[40] P. Hess, <i>Periodic-parabolic boundary value problems and positivity</i>, Longman Scientific and Technical, 1991. · Zbl 0731.35050
[41] X, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dyn. Diff. Equat., 31, 1247-1278 (2019) · Zbl 1425.34086 · doi:10.1007/s10884-017-9601-7
[42] X, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Diff. Equat., 29, 67-82 (2017) · Zbl 1365.34145 · doi:10.1007/s10884-015-9425-2
[43] Y, Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure, SIAM J. Math. Anal., 40, 2496-2516 (2009) · Zbl 1179.34031 · doi:10.1137/070709761
[44] D, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311, 417-438 (2005) · Zbl 1077.37051 · doi:10.1016/j.jmaa.2005.02.062
[45] P, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 251-275 (2005) · Zbl 1128.37016 · doi:10.1137/S0036141003439173
[46] H, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real., 2, 145-160 (2001) · Zbl 1113.92319 · doi:10.1007/978-0-387-21761-1_9
[47] A. Friedman, <i>Partial differential equations of parabolic type</i>, Courier Dover Publications, 2008.
[48] J. K. Hale, <i>Asymptotic behavior of dissipative systems</i>, American Mathematical Society, 1988. · Zbl 0642.58013
[49] S, Regional control for a spatially structured malaria model, Math. Method. Appl. Sci., 42, 909-2933 (2019) · Zbl 1464.35351 · doi:10.1007/s10013-021-00475-x
[50] N, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 1272-1296 (2008) · Zbl 1142.92025 · doi:10.1007/s11538-008-9299-0
[51] X, Dynamics of a periodic Chikungunya model with temperature and rainfall effects, Commun. Nonlinear Sci. Numer. Simulat., 90, 105409 (2020) · Zbl 1454.34112 · doi:10.1016/j.cnsns.2020.105409
[52] M, Global dynamics of a reaction-diffusion malaria model, Nonlinear Anal. Real., 61, 103332 (2021) · Zbl 1505.92242 · doi:10.1016/j.nonrwa.2021.103332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.