×

Dynamics of a periodic Chikungunya model with temperature and rainfall effects. (English) Zbl 1454.34112

Summary: In this paper, a periodic Chikungunya model with temperature and rainfall effects is proposed and studied, which incorporates time-dependent extrinsic incubation period, time-dependent maturation delay, asymptomatic and symptomatic infectious humans. Two threshold parameters for the extinction and persistence of mosquitos and the virus are derived, respectively: the mosquito reproduction number \(\mathcal{R}_m\) and the basic reproduction number \(\mathcal{R}_0\). Then the analytic results are verified by numerical simulation with the temperature and rainfall data of the state of Ceará, where the largest outbreak in Brazil’s history occurred in 2017. And the effects of rainfall, seasonality, and asymptomatic infection in humans on mosquito population and the Chikungunya transmission are explored. Our simulations show that if these factors are not taken into account, the number of mosquito population and people infected may be overestimated. Finally, the relationships between \(\mathcal{R}_m\) and \(\mathcal{R}_0\) and some parameters are established.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D30 Epidemiology
34K13 Periodic solutions to functional-differential equations
34K20 Stability theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
Full Text: DOI

References:

[1] Pialoux, G.; Gauzere, B.-A.; Jaureguiberry, S.; Strobel, M., Chikungunya, an epidemic arbovirosis, Lancet Infect Dis, 7, 5, 319-327 (2007)
[2] Chang, L.-J.; Dowd, K. A.; Mendoza, F. H.; Saunders Jamie G.and Sitar, S.; Plummer, S. H.; Yamshchikov, G., Safety and tolerability of Chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial, Lancet, 384, 9959, 2046-2052 (2014)
[3] CDC. Asymptomatic rate of Chikungunya, 2019. (Accessed 1 July 2019). https://www.nccdcgov/travel/yellowbook/2018/infectious-diseases-related-to-travel/chikungunya
[4] Thiberville, S.-D.; Moyen, N.; Dupuis-Maguiraga, L.; Nougairede, A.; Gould, E. A.; Roques, P., Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy, Antiviral Res, 99, 3, 345-370 (2013)
[5] Deeba, F.; Islam, A.; Kazim, S. N.; Naqvi, I. H.; Broor, S.; Ahmed, A., Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies, Pathog Dis, 74, 3, 10pages (2016)
[6] Kabir, K. M.A.; Tanimoto, J., Vaccination strategies in a two-layer SIR/V-UA epidemic model with costly information and buzz effect, Commun Nonlinear Sci Numer Simulat, 76, 92-108 (2019) · Zbl 1508.92140
[7] Sergon, K.; Njuguna, C.; Kalani, R.; Ofula, V.; Onyango, C.; Konongoi, L. S., Seroprevalence of Chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004, Am J Trop Med Hyg, 78, 2, 333-337 (2008)
[8] Khan, K.; Bogoch, I.; Brownstein, J. S.; Miniota, J.; Nicolucci, A.; Hu, W., Assessing the origin of and potential for international spread of Chikungunya virus from the Caribbean, PLoS Curr, 6, 11pages (2014)
[9] Perkins, T. A.; Metcalf, C. J.E.; Grenfell, B. T.; Tatem, A. J., Estimating drivers of autochthonous transmission of Chikungunya virus in its invasion of the Americas, PLoS Curr, 7, 1-19 (2015)
[10] Nsoesie, E. O.; Kraemer, M. U.; Golding, N.; Pigott, D. M.; Brady, O. J.; Moyes, C. L., Global distribution and environmental suitability for Chikungunya virus, 1952 to 2015, Euro Surveill, 21, 20, 7-18 (2016)
[11] CDC. Clinical evaluation & disease. (Accessed 1 July 2019). https://www.cdcgov/chikungunya/hc/clinicalevaluationhtml2015.
[12] Naveca, F. G.; Claro, I.; Giovanetti, M.; et al., Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon, PLoS Neglect Trop D, 13, 3, 21pages (2019)
[13] Gould, E. A.; Higgs, S., Impact of climate change and other factors on emerging arbovirus diseases, T Roy Soc Trop Med H, 103, 2, 109-121 (2009)
[14] de Garin, A.; Bejaran, R.; Carbajo, A.; de Casas, S.; Schweigmann, N., Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability, Int J Biometeorol, 44, 3, 148-156 (2000)
[15] Hopp, M. J.; Foley, J. A., Global-scale relationships between climate and the dengue fever vector, Aedes aegypti, Clim Change, 48, 2-3, 441-463 (2001)
[16] Valdez, L. D.; Sibona, G. J.; Condat, C. A., Impact of rainfall on Aedes aegypti populations, Ecol Model, 385, 96-105 (2018)
[17] Bove, R.; Pelino, V.; De Leonibus, L., Complexity in rainfall phenomena, Commun Nonlinear Sci Numer Simulat, 11, 6, 678-684 (2006) · Zbl 1137.86306
[18] Dumont, Y.; Chiroleu, F.; Domerg, C., On a temporal model for the Chikungunya disease: modeling, theory and numerics, Math Biosci, 213, 1, 80-91 (2008) · Zbl 1135.92028
[19] Dumont, Y.; Chiroleu, F., Vector control for the Chikungunya disease, Math Biosci Eng, 7, 2, 313-345 (2010) · Zbl 1259.92071
[20] Moulay, D.; Aziz-Alaoui, M. A.; Cadivel, M., The Chikungunya disease: modeling, vector and transmission global dynamics, Math Biosci, 229, 1, 50-63 (2011) · Zbl 1208.92044
[21] Dumont, Y.; Tchuenche, J. M., Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J Math Biol, 65, 5, 809-854 (2012) · Zbl 1311.92175
[22] Dufourd, C.; Dumont, Y., Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Comput Math Appl, 66, 9, 1695-1715 (2013) · Zbl 1345.34105
[23] Moulay, D.; Aziz-Alaoui, M. A.; Kwon, H.-D., Optimal control of Chikungunya disease: larvae reduction, treatment and prevention, Math Biosci Eng, 9, 2, 369-392 (2012) · Zbl 1260.92068
[24] Yakob, L.; Clements, A. C.A., A mathematical model of Chikungunya dynamics and control: the major epidemic on Reunion Island, PLoS ONE, 8, 3, 6pages (2013)
[25] Pongsumpun, P.; Sangsawang, S., Local stability analysis for age structural model of Chikungunya disease, J Basic Appl Sci Res, 3, 3, 302-312 (2013)
[26] Manore, C. A.; Hickmann, K. S.; Xu, S.; Wearing, H. J.; Hyman, J. M., Comparing dengue and Chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J Theor Biol, 356, 174-191 (2014) · Zbl 1412.92292
[27] Agusto, F. B.; Easley, S.; Freeman, K.; Thomas, M., Mathematical model of three age-structured transmission dynamics of Chikungunya virus, Comput Math Methods Med, 2016, 31pages (2016) · Zbl 1348.92140
[28] Agusto, F. B., Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of Chikungunya virus, Discrete Cont Dyn-B, 22, 3, 687-715 (2017) · Zbl 1360.92096
[29] Ruiz-Moreno, D.; Vargas, I. S.; Olson, K. E.; Harrington, L. C., Modeling dynamic introduction of Chikungunya virus in the United States, PLoS Neglect Trop D, 6, 11, 8pages (2012)
[30] Liu, X.; Stechlinski, P., Application of control strategies to a seasonal model of Chikungunya disease, Appl Math Model, 39, 12, 3194-3220 (2015) · Zbl 1443.92178
[31] Kakarla, S. G.; Mopuri, R.; Mutheneni, S. R.; Bhimala, K. R.; Kumaraswamy, S.; Kadiri, M. R., Temperature dependent transmission potential model for Chikungunya in India, Sci Total Environ, 647, 66-74 (2019)
[32] Nisbet, R. M.; Gurney, W. S.C., The systematic formulation of population models for insects with dynamically varying instar duration, Theor Popul Biol, 23, 1, 114-135 (1983) · Zbl 0514.92021
[33] Omori, R.; Adams, B., Disrupting seasonality to control disease outbreaks: the case of koi herpes virus, J Theor Biol, 271, 1, 159-165 (2011) · Zbl 1405.92268
[34] Wang, X.; Zhao, X.-Q., A malaria transmission model with temperature-dependent incubation period, Bull Math Biol, 79, 5, 1155-1182 (2017) · Zbl 1372.92113
[35] Wang, F.-B.; Wu, R.; Zhao, X.-Q., A west nile virus transmission model with periodic incubation periods, SIAM J Appl Dyn Syst, 18, 3, 1498-1535 (2019) · Zbl 1423.35187
[36] Zhao, X.-Q., Basic reproduction ratios for periodic compartmental models with time delay, J Dyn Differ Equ, 29, 1, 67-82 (2017) · Zbl 1365.34145
[37] Lou, Y.; Zhao, X.-Q., A theoretical approach to understanding population dynamics with seasonal developmental durations, J Nonlinear Sci, 27, 2, 573-603 (2017) · Zbl 1384.37116
[38] Walter, W., On strongly monotone flows, Ann Pol Math, 66, 269-274 (1997) · Zbl 0870.34014
[39] Zhao, X.-Q., Dynamical systems in population biology (2017), Springer: Springer New York · Zbl 1393.37003
[40] Smith, H. L., Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems (1995), American Mathematical Society: American Mathematical Society Providence · Zbl 0821.34003
[41] Hale, J.; Lunel, S. M.V., Introduction to functional differential equations (1993), Springer: Springer New York · Zbl 0787.34002
[42] Wang, X.; Zhao, X.-Q., Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J Appl Dyn Syst, 16, 2, 853-881 (2017) · Zbl 1365.35075
[43] Pierre, M.; Zhao, X.-Q., Global attractors and steady states for uniformly persistent dynamical systems, SIAM J Math Anal, 37, 1, 251-275 (2005) · Zbl 1128.37016
[44] Wang, W.; Zhao, X.-Q., Threshold dynamics for compartmental epidemic models in periodic environments, J Dyn Differ Equ, 20, 3, 699-717 (2008) · Zbl 1157.34041
[45] PAWH, Number of reported cases of Chikungunya fever in the Americas, by country or territory, 2017, Washington (2017)
[46] Aguiar, B. S.; Lorenz, C.; Virginio, F.; Suesdek, L.; Chiaravalloti-Neto, F., Potential risks of Zika and Chikungunya outbreaks in Brazil: a modelling study, Int J Infect Dis, 70, 20-29 (2018)
[47] Figueiredo, L. T.M., Large outbreaks of Chikungunya virus in Brazil reveal uncommon clinical features and fatalities, Rev Soc Bras Med Trop, 50, 5, 583-584 (2017)
[48] da Silva Junior, G. B.; Pinto, J. R.; Salani Mota, R. M.; Pires Neto, R.d. J.; Daher, E. D.F., Risk factors for death among patients with Chikungunya virus infection during the outbreak in northeast Brazil, 2016-2017, Trans R Soc Trop Med Hyg, 113, 221-226 (2019)
[49] Gouvea, M. M., Time-spatial model on the dynamics of the proliferation of Aedes aegypti, Commun Nonlinear Sci Numer Simulat, 44, 130-143 (2017) · Zbl 1465.92089
[50] Silva, J. V.J.; Ludwig-Begall, L. F.; de Oliveira-Filho, E. F.; Oliveira, R. A.S.; Duraes-Carvalho, R.; Lopes, T. R.R., A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control, Acta Trop, 188, 213-224 (2018)
[51] Manimunda, S. P.; Vijayachari, P.; Uppoor, R.; Sugunan, A. P.; Singh, S. S.; Rai, S. K., Clinical progression of Chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging, Trans R Soc Tro Med Hyg, 104, 6, 392-399 (2010)
[52] Godaert, L.; Bartholet, S.; Gazeuse, Y.; Brouste, Y.; Najioullah, F.; Kanagaratnam, L., Misdiagnosis of Chikungunya virus infection: comparison of old and younger adults: misdiagnosis of Chikungunya virus infection, J Am Geriatr Soc, 66, 9, 1768-1772 (2018)
[53] Barmak, D. H.; Dorso, C. O.; Otero, M.; Solari, H. G., Modelling interventions during a dengue outbreak, Epidemiol Infect, 142, 3, 545-561 (2014)
[54] Focks, D. A.; Daniels, E.; Haile, D. G.; Keesling, J., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results, Am J Trop Med Hyg, 53, 5, 489-506 (1995)
[55] Mclean, D. M.; Clarke, A. M.; Coleman, J. C.; Montalbetti, C. A.; Skidmore, A.; Walters, T., Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures, Can J Microbiol, 20, 2, 255-262 (1974)
[56] Wang, X.; Zou, X., Threshold dynamics of a temperature-dependent stage-structured mosquito population model with nested delays, Bull Math Biol, 80, 7, 1962-1987 (2018) · Zbl 1396.92088
[57] Romeo Aznar, V.; Otero, M.; Sol De Majo, M.; Fischer, S.; Solari, H. G., Modeling the complex hatching and development of Aedes aegypti in temperate climates, Ecol Model, 253, 4, 44-55 (2013)
[58] Marinho, R. A.; Beserra, E. B.; Bezerra-Gusmo, M. A.; Porto, V.d. S.; Olinda, R. A.; dos Santos, C. A.C., Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (diptera: culicidae) in three cities in Paraiba, Brazil, J Vector Ecol, 41, 1, 1-10 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.