×

Higher Kac-Moody algebras and moduli spaces of \(G\)-bundles. (English) Zbl 1409.14027

There are at least two ways to construct affine Kac-Moody algebras, namely by their Cartan algebra giving a presentation by generators and relations, and as (an extension of) a central extension of the loop algebra, i.e. the Lie algebra \(\mathfrak{g}((t))=\mathfrak{g}\otimes_kk((t))\) for a finite dimensional Lie algebra \(\mathfrak{g}\) of a semisimple algebraic group \(G\) over a field of characteristic zero \(k\). This central extension is given by the Kac-Moody cocycle \[ c(x\otimes f,y\otimes g)=\kappa(x,y)\mathrm{Res}_0(f\partial g), \] where \(\kappa\) is the Killing form of \(\mathfrak{g}\). This theory is well-established and documented (see [V. G. Kac, Infinite dimensional Lie algebras. 3rd ed. Cambridge etc.: Cambridge University Press (1990; Zbl 0716.17022)] and [R. V. Moody and A. Pianzola, Lie algebras with triangular decompositions. New York, NY: John Wiley & Sons (1995; Zbl 0874.17026)]).
In the present article, the authors generalize this theory to higher dimensions, i.e. instead of functions on the circle (corresponding to \(k((t))\)), they want to consider functions on higher dimensional manifolds/varieties. The main new feature of their approach is the systematic use of derived algebraic geometry. The functions on \(D^{\circ}_n:=\widehat{\mathbb A}\setminus \{0\}\), i.e. a formal neighborhood of zero in the affine space \({\mathbb A}^n\), have the cohomology \[ H^p(D^{\circ}_n,{\mathcal O})=\begin{cases} k[[t_1,\ldots,t_n]] & \mathrm{if } p=0 \\ (t_1\ldots t_n)^{-1}k[t_1^{-1},\ldots,t_n^{-1}] & \text{if } p=n-1 \\ 0 & \text{otherwise} \end{cases} . \] This shows that in cohomology, one obtains (in degree \(n-1\)) the missing polar part. The idea from the derived point of view is to replace \(k((t))\) by the complex \(R\Gamma(D^{\circ}_n,{\mathcal O})\). The loop algebra \(\mathfrak{g}((t))\) becomes then \(\mathfrak{g}^\bullet_n:=R\Gamma(D^{\circ}_n,\mathfrak{g}\otimes{\mathcal O})\), the \(n\)th derived current algebra. The Killing form will be replaced by an invariant polynomial \(P\in S^{n+1}(\mathfrak{g}^*)^{\mathfrak g}\). The first main theorem reads then.
Theorem 1. The functional \(\gamma_P:(\mathfrak{g}^\bullet_n)^{\otimes(n+1)}\to k\) given by \[ \gamma_P(x_0\otimes f_0,\ldots,x_n\otimes f_n)=P(x_0,\ldots,x_n)\mathrm{Res}(f_0 df_1\wedge\ldots\wedge df_n) \] is of total degree \(2\) and a cocycle defining a class in \({\mathbb H}_{\mathrm{Lie}}^2(\mathfrak{g}^\bullet_n)\). This class is non-zero for \(\mathfrak{g}\) simple.
Here \({\mathbb H}_{\mathrm{Lie}}^2(\mathfrak{g}^\bullet_n)\) is the total cohomology of the differential graded Lie algebra \(\mathfrak{g}^\bullet_n\), and \(\mathrm{Res}\) is a certain residue normalized on the Bochner-Martinelli form \(\Omega(z,z^*)\).
In the classical setting, it is well-known that the central extension of the loop algebra plays a role in the construction of the determinant line bundle on the moduli space of \(G\)-bundles on curves, as principal \(G\)-bundles on a smooth projective curve \(X\) may be glued from bundles on a formal disc and bundles on the complement by using a gluing function on the boundary of the disc with values in \(G\) (Beauville-Lazlo construction), see for example [C. Sorger, ICTP Lect. Notes 1, 1–57 (2000; Zbl 0989.14009)].
In the present article, the authors generalize the Beauville-Lazlo construction to the derived higher dimensional setting. Their second main theorem (Theorem 5.3.8 and Theorem 5.5.9) is the construction of an action of the differential graded Lie algebra \(\mathfrak{g}^\bullet_n\) on the derived moduli stack of \(G\)-bundles by changes of the local trivialization, the construction of a determinant line bundle on the moduli stack and an action of the extended dg Lie algebra on the determinant line bundle in parallel to the classical theory.

MSC:

14D23 Stacks and moduli problems
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18G60 Other (co)homology theories (MSC2010)
32A27 Residues for several complex variables
32C35 Analytic sheaves and cohomology groups
53C05 Connections (general theory)
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

References:

[1] Artin, M.; Mazur, B., Étale Homotopy, Lecture Notes in Math., 100 (1969) · Zbl 0182.26001
[2] Beals, R.; Greiner, P., Calculus on Heisenberg Manifolds (1988), Princeton Univ. Press · Zbl 0654.58033
[3] Beilinson, A., Residues and adeles, Funktsional. Anal. i Prilozhen., 14, 1, 44-45 (1980) · Zbl 0509.14018
[4] Beilinson, A., How to Glue Perverse Sheaves, Lecture Notes in Math., 42-51 (2006) · Zbl 0651.14009
[5] Beilinson, A.; Drinfeld, V., Chiral Algebras, Amer. Math. Soc. Colloq. Publ., vol. 51 (2004) · Zbl 1138.17300
[6] Boutet de Monvel, L.; Guillemin, V., Spectral Theory of Toeplitz Operators, Ann. of Math. Stud., vol. 99 (1981), Princeton University Press · Zbl 0469.47021
[7] Braünling, O., On the local residue symbol in the style of Tate and Beilinson · Zbl 1398.32004
[8] Braünling, O.; Gröchenig, M.; Heleodoro, A.; Wolfson, J., On the normally ordered tensor product and duality for Tate spaces, Theory Appl. Categ., 33, 13, 296-349 (2018) · Zbl 1411.14005
[9] Braünling, O.; Gröchenig, M.; Wolfson, J., Tate objects in exact categories, Mosc. Math. J., 16, 1 (2016) · Zbl 1375.18062
[10] Braünling, O.; Gröchenig, M.; Wolfson, J., Operator ideals in Tate objects, Math. Res. Lett., 23, 1565-1631 (2017) · Zbl 1375.18062
[11] Burghehea, D., Cyclic homology and algebraic K-theory of spaces I, Contemp. Math., 55, I, 89-115 (1986) · Zbl 0615.55009
[12] Cohn, L., Differential graded categories are k-linear stable infinity categories (2013)
[13] Conrad, B., Grothendieck Duality and Base Change, Lecture Notes in Math., vol. 1750 (2000) · Zbl 0992.14001
[14] Dragomir, S.; Tomassini, G., Differential Geometry and Analysis in CR Manifolds, Progr. Math., vol. 246 (2006), Birkhäuser: Birkhäuser Boston · Zbl 1099.32008
[15] Drinfeld, V., Infinite-dimensional vector bundles in algebraic geometry, (Etingof, P.; etal., Unity of Mathematics. Unity of Mathematics, Progr. Math., vol. 204 (2006), Birkhäuser: Birkhäuser Boston), 263-304 · Zbl 1108.14012
[16] Dundas, B. I.; Goodwillie, T. G.; McCarthy, R., The Local Structure of Algebraic K-theory (2013), Springer-Verlag · Zbl 1272.55002
[17] Dwyer, W.; Kan, D., Simplicial localizations of categories, J. Pure Appl. Algebra, 17, 267-284 (1980) · Zbl 0485.18012
[18] Dwyer, W.; Kan, D., Calculating simplicial localizations, J. Pure Appl. Algebra, 18, 17-35 (1988) · Zbl 0485.18013
[19] Faonte, G., Simplicial nerve of an \(A_\infty \)-category. 2013
[20] Feigin, B. L.; Tsygan, B. L., Cohomology of Lie algebras of generalized Jacobi matrices, Funct. Anal. Appl., 17, 153-155 (1983) · Zbl 0544.17011
[21] Feigin, B. L.; Tsygan, B. L., Riemann-Roch theorem and Lie algebra cohomology, Rend. Circ. Math. Palermo, Ser. 2, 21, Suppl., 15-52 (1989) · Zbl 0686.14007
[22] Francis, J.; Gaitsgory, D., Chiral Koszul duality, Selecta Math. (N.S.), 18, 27-87 (2012) · Zbl 1248.81198
[23] Fulton, W.; Harris, J., Representation Theory: A First Course, Grad. Texts in Math. (1991) · Zbl 0744.22001
[24] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, Resultants and Mutidimensional Determinants (1994), Birkhäuser: Birkhäuser Boston · Zbl 0827.14036
[25] Gelfand, S. I.; Manin, Y. I., Methods of Homological Algebra (2003), Springer-Verlag · Zbl 1006.18001
[26] Griffiths, P. A.; Harris, J., Principles of Algebraic Geometry (1994), Wiley Classics Library, (reprint of 1978) · Zbl 0836.14001
[27] Hennion, B., Tangent Lie algebra of derived Artin stacks, J. Reine Angew. Math. (Crelles), 2018, 741, 1-46 (2015) · Zbl 1423.14011
[28] Hennion, B., Higher dimensional formal loop space, Ann. Sci. ENS, 50(4), 3, 609-664 (2017) · Zbl 1391.18020
[29] Hennion, B., Tate objects in stable \((\infty, 1)\)-categories, Homology, Homotopy Appl., 19, 2, 373-395 (2017) · Zbl 1390.18029
[30] Hennion, B.; Porta, M.; Vezzosi, G., Formal gluing for non-linear flags (2016)
[31] Hinich, V., Homological algebra of homotopy algebras, Comm. Algebra, 25, 10, 3291-3323 (1997) · Zbl 0894.18008
[32] Hinich, V.; Schechtman, V., Deformation theory and Lie algebra homology I and II, Algebra Colloq., 4, 213-240 (1997), 293-316 · Zbl 0905.17022
[33] Huber, A., On the Parshin-Beilinson adeles for schemes, Abh. Math. Semin. Univ. Hambg., 61, 249-273 (1991) · Zbl 0763.14006
[34] Kashiwara, M., The flag manifold of Kac-Moody Lie algebra, (Algebraic Analysis, Geometry and Number Theory (1989), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press Baltimore), 161-190 · Zbl 0764.17019
[35] Kashiwara, M.; Schapira, P., Categories and Sheaves, Grundlehren Math. Wiss., vol. 332 (2006) · Zbl 1118.18001
[36] Kawamoto, N.; Namikawa, Y.; Tsuchiya, A.; Yamada, Y., Geometric realization of conformal field theory on Riemann surfaces, Comm. Math. Phys., 116, 247-308 (1988) · Zbl 0648.35080
[37] Keller, B., Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, 123, 1-3, 223-273 (1998) · Zbl 0890.18007
[38] Keller, B., On the cyclic homology of ringed spaces and schemes, Doc. Math., 3, 231-259 (1998) · Zbl 0917.19002
[39] Keller, B., On the cyclic homology of exact categories, J. Pure Appl. Algebra, 136, 1, 1-56 (1999) · Zbl 0923.19004
[40] Laumon, G., Sur la catégorie dérivée des \(D\)-modules filtrés, (Algebraic Geometry. Algebraic Geometry, Lecture Notes in Math., vol. 1016 (1983)), 151-237 · Zbl 0551.14006
[41] Lefschetz, S., Algebraic Topology, Amer. Math. Soc. Colloq. Publ., vol. 27 (1942) · Zbl 0061.39302
[42] Loday, J.-L., Cyclic Homology, Grundlehren Math. Wiss., vol. 301 (1992) · Zbl 0780.18009
[43] Lurie, J., Higher Topos Theory, Ann. of Math. Stud., vol. 170 (2009) · Zbl 1175.18001
[44] J. Lurie, DAG V: Structured spaces, 2011, available online.; J. Lurie, DAG V: Structured spaces, 2011, available online.
[45] J. Lurie, DAG X: Formal moduli problems, 2011, available online.; J. Lurie, DAG X: Formal moduli problems, 2011, available online.
[46] J. Lurie, DAG XIV: Representability theorems, 2012, available online.; J. Lurie, DAG XIV: Representability theorems, 2012, available online.
[47] J. Lurie, Higher algebra, 2016, available online.; J. Lurie, Higher algebra, 2016, available online.
[48] Osipov, D., \(n\)-dimensional local fields and adeles on \(n\)-dimensional schemes, London Math. Soc. Lecture Note Ser., 347, 131-164 (2008) · Zbl 1144.11078
[49] Pressley, A.; Segal, G., Loop Groups (1988), Oxford Univ. Press · Zbl 0638.22009
[50] Prosmans, F., Derived projective limits of topological abelian groups, J. Funct. Anal., 162, 135-177 (1999) · Zbl 0916.22001
[51] Prosmans, F., Derived categories for functional analysis, Publ. RIMS, 36, 19-83 (2000) · Zbl 0973.46069
[52] F. Prosmans, J.-P. Schneiders, A homological study of bornological spaces, 2000, available online.; F. Prosmans, J.-P. Schneiders, A homological study of bornological spaces, 2000, available online.
[53] Saito, S., On Previdi’s delooping conjecture for K-theory, Algebra Number Theory, 9, 1-11 (2015) · Zbl 1350.19001
[54] Schneiders, J.-P., Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr., 76, 1-140 (1999) · Zbl 0926.18004
[55] Schwede, S.; Shipley, B., Stable model categories are categories of modules, Topology, 42, 103-153 (2003) · Zbl 1013.55005
[56] Tabuada, G., Invariants additifs de dg-catégories, Int. Math. Res. Not., 53, 3309-3339 (2005) · Zbl 1094.18006
[57] Tamarkin, D., A formalism for the renormalization procedure, Confluentes Math., 4, 1 (2012) · Zbl 1264.81278
[58] Thomason, R. W.; Trobaugh, T., Higher algebraic K-theory of sheaves and of derived categories, (Grothendieckl Festschrift, vol. III. Grothendieckl Festschrift, vol. III, Progr. Math., vol. 88 (1990), Birkhäuser: Birkhäuser Boston), 247-435
[59] Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math., 167, 3, 615-667 (2007) · Zbl 1118.18010
[60] Toën, B., Lectures on dg-categories, Topics in Algebraic and Topological \(K\)-Theory. Topics in Algebraic and Topological \(K\)-Theory, Lecture Notes in Math., 2008, 243-302 (2011) · Zbl 1216.18013
[61] Toën, B., Derived Azumaya algebras and generators for twisted derived categories, Invent. Math., 189, 3, 581-652 (2012) · Zbl 1275.14017
[62] Toën, B., Derived algebraic geometry, EMS Surv. Math. Sci., 1, 2, 153-240 (2014) · Zbl 1314.14005
[63] Toën, B.; Vezzosi, G., Homotopy Algebraic Geometry II. Geometric Stacks and Applications, Mem. Amer. Math. Soc., vol. 902 (2008) · Zbl 1145.14003
[64] Weibel, C., Cyclic homology for schemes, Proc. Amer. Math. Soc., 124, 6, 1655-1662 (1996) · Zbl 0855.19002
[65] Weibel, C., The Hodge filtration and cyclic homology, \(K\)-Theory, 124, 2, 145-164 (1997) · Zbl 0881.19002
[66] Weyl, H., The Classical Groups. Their Invariants and Representations (1939), Princeton University Press · JFM 65.0058.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.