×

Evolutionary, symmetric \(p\)-Laplacian. Interior regularity of time derivatives and its consequences. (English) Zbl 1362.35160

An evolutionary, non-degenerate, symmetric \(p\)-Laplacian is considered. Interior regularity of time derivatives of its local weak solution is proven. A new local regularity technique of iterations in Nikolskii-Bochner spaces is proposed (it is interesting by itself, as it may be modified to provide new regularity results for the full-gradient p-Laplacian case with lower-order dependencies). Using the regularity result for the time derivatives, regularity of the main part is derived. The appendix on Nikolskii-Bochner spaces (including theorems on their embeddings and interpolations) is of independent interest.

MSC:

35K59 Quasilinear parabolic equations
35K55 Nonlinear parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] E. Acerbi, Regularity results for parabolic systems related to a class of non-Newtonian fluids,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 25 (2004) · Zbl 1052.76004 · doi:10.1016/S0294-1449(03)00031-3
[2] R. Adams, <em>Sobolev Spaces</em>,, Elsevier/Academic Press (2003)
[3] H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Glas. Mat. Ser. III, 35, 161 (2000) · Zbl 0997.46029
[4] H. Amann, Anisotropic function spaces on singular manifolds,, preprint http://arxiv.org/pdf/1204.0606.pdf. · Zbl 1280.46022 · doi:10.1002/mana.201100157
[5] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,, Math. Nachr., 186, 5 (1997) · Zbl 0880.42007 · doi:10.1002/mana.3211860102
[6] H. Bae, Regularity of non-Newtonian fluids,, J. Math. Fluid Mech., 16, 225 (2014) · Zbl 1453.76010 · doi:10.1007/s00021-013-0149-y
[7] H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11, 233 (2009) · Zbl 1213.76047 · doi:10.1007/s00021-008-0257-2
[8] H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary,, J. Math. Fluid Mech., 11, 258 (2009) · Zbl 1190.35174 · doi:10.1007/s00021-008-0258-1
[9] H. Beirão da Veiga, On the global \(W^{2,q}\) regularity for nonlinear \(N\)-systems of the \(p\)-Laplacian type in \(n\) space variables,, Nonlinear Anal., 75, 4346 (2012) · Zbl 1243.35059 · doi:10.1016/j.na.2012.03.021
[10] H. Beirão da Veiga, On the global regularity for nonlinear systems of the \(p\)-Laplacian type,, Discrete Contin. Dyn. Syst. Ser. S, 6, 1173 (2013) · Zbl 1263.35094 · doi:10.3934/dcdss.2013.6.1173
[11] H. Beirão da Veiga, Boundary regularity of shear thickening flows,, J. Math. Fluid Mech., 13, 387 (2011) · Zbl 1270.35360 · doi:10.1007/s00021-010-0025-y
[12] A. Benedek, The spaces \(L^p\) with mixed norm,, Duke Math J., 8, 301 (1961) · Zbl 0107.08902
[13] C. Bennett, <em>Interpolation of Operators</em>,, Academic Press (1988) · Zbl 0647.46057
[14] J. Bergh, <em>Interpolation Spaces: An Introduction</em>,, Springer-Verlag (1976) · Zbl 0344.46071
[15] O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian),, Dokl. Akad. Nauk SSSR, 126, 1163 (1959) · Zbl 0097.09701
[16] O. Besov, <em>Integral Representations of Functions, and Embedding Theorems</em> (Russian),, Nauka (1975) · Zbl 0352.46023
[17] E. DiBenedetto, Hölder estimates for nonlinear degenerate parabolic systems,, J. Reine Angew. Math., 357, 1 (1985) · Zbl 0549.35061 · doi:10.1515/crll.1985.357.1
[18] B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian),, Mat. Sb. (N. S.), 43, 451 (1957)
[19] V. Bögelein, The regularity of general parabolic systems with degenerate diffusion,, Mem. Amer. Math. Soc., 221 (2013) · Zbl 1297.35066 · doi:10.1090/S0065-9266-2012-00664-2
[20] M. Bulíček, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33, 1995 (2010) · Zbl 1202.35152 · doi:10.1002/mma.1314
[21] J. Burczak, <em>Regularity of solutions to nonlinear non-diagonal evolutionary systems</em>,, PhD Thesis (2015)
[22] J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems,, manuscripta math., 144, 51 (2014) · Zbl 1293.35065 · doi:10.1007/s00229-013-0640-z
[23] J. Burczak, Interior regularity of space derivatives to an evolutionary, symmetric \(\varphi \)-Laplacian,, preprint: arXiv:1507.05843 [math.AP] · Zbl 1365.35061
[24] F. Crispo, On the existence, uniqueness and \(C^{1, \gamma} (\O) \cap W^{2,2} (\O)\) regularity for a class of shear-thinning fluids,, J. Math. Fluid Mech., 10, 455 (2008) · Zbl 1189.35221 · doi:10.1007/s00021-008-0282-1
[25] E. DiBenedetto, <em>Degenerate Parabolic Systems</em>,, Springer-Verlag (1993) · Zbl 0828.35066 · doi:10.1007/978-1-4612-0895-2
[26] F. Duzaar, Second order parabolic systems, optimal regularity and singular sets of solutions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 705 (2005) · Zbl 1099.35042 · doi:10.1016/j.anihpc.2004.10.011
[27] F. Duzaar, <em>Parabolic Systems with Polynomial Growth and Regularity</em>,, Memoirs A.M.S. 214 (2011) · Zbl 1238.35001 · doi:10.1090/S0065-9266-2011-00614-3
[28] L. Diening, Existence of weak solutions for unsteady motion of generalized Newtonian fluids,, Ann. Scuola Norm. Sup. Pisa., 9, 1 (2010) · Zbl 1253.76017
[29] J. Frehse, On regularity of the time derivative for degenerate parabolic systems,, SIAM J. Math. Anal., 47, 3917 (2015) · Zbl 1325.35108 · doi:10.1137/141000725
[30] M. Fuchs, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution,, Comput. Math. Appl., 53, 509 (2007) · Zbl 1122.76008 · doi:10.1016/j.camwa.2006.02.039
[31] K. Golovkin, On equivalent normalizations of fractional spaces (Russian),, Trudy Mat. Inst. Steklova, 66, 364 (1962) · Zbl 0142.10001
[32] P. Grisvard, Commutativité de deux foncteurs d’interpolation et applications,, J. Math. Pures Appl., 45, 143 (1966) · Zbl 0187.05803
[33] B. Jin, On the Caccioppoli inequality of the unsteady Stokes system,, Int. J. Numer. Anal. Model. Ser. B, 4, 215 (2013) · Zbl 1302.35317
[34] O. John, <em>Function Spaces</em>,, Academia (1977)
[35] H. Johnen, Inequalities connected with the moduli of smoothness,, Mat. Vest., 24, 289 (1972) · Zbl 0254.26005
[36] P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions,, Z. Anal. Anwendungen, 24, 467 (2005) · Zbl 1094.35100 · doi:10.4171/ZAA/1251
[37] P. Kaplický, Regularity of flow of anisotropic fluid,, J. Math. Fluid Mech., 10, 71 (2008) · Zbl 1162.76304 · doi:10.1007/s00021-006-0217-7
[38] P. Kaplický, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities,, NoDEA, 9, 175 (2002) · Zbl 0991.35066 · doi:10.1007/s00030-002-8123-z
[39] J. Málek, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case \(p \ge 2\),, Adv. Differential Equations, 6, 257 (2001) · Zbl 1021.35085
[40] A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles,, J. Math Pures Appl., 9, 337 (1927) · JFM 53.0232.02
[41] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region,, Publ. Res. Inst. Math. Sci., 9, 325 (1974) · Zbl 0287.46046
[42] J. Nečas, On regularity of solutions of nonlinear parabolic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18, 1 (1991) · Zbl 0735.35035
[43] S. Nikol’skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian),, Doklady Akad. Nauk SSSR (N.S.), 76, 785 (1951)
[44] P. Rabier, Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic problems,, Electron. J. Diff. Equ., 10, 1 (2011) · Zbl 1217.46020
[45] M. Růžička, <em>Electrorheological Fluids: Modeling and Mathematical Theory</em>,, volume 1748 of {Lecture Notes in Mathematics (1748)} · Zbl 0962.76001 · doi:10.1007/BFb0104029
[46] B. Scharf, Traces of vector-valued Sobolev spaces,, Math. Nachr., 285, 1082 (2012) · Zbl 1254.46038 · doi:10.1002/mana.201100011
[47] J. Simon, Sobolev, Besov and Nikol’skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval,, Ann. Mat. Pura Appl., 157, 117 (1990) · Zbl 0727.46018 · doi:10.1007/BF01765315
[48] L. Simon, <em>Theorems on Regularity and Singularity of Energy Minimizing Maps</em>,, Lectures in Mathematics ETH Zürich (1996) · Zbl 0864.58015 · doi:10.1007/978-3-0348-9193-6
[49] P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity,, Ann. Mat. Pura Appl., 134, 241 (1983) · Zbl 0538.35034 · doi:10.1007/BF01773507
[50] H. Triebel, <em>Theory of Function Spaces I</em>,, Birkhäuser Verlag (1983) · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
[51] H. Triebel, <em>Theory of Function Spaces III</em>,, Birkhäuser Verlag (2006) · Zbl 1104.46001
[52] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems,, Acta Math., 138, 219 (1977) · Zbl 0372.35030
[53] E. Zeidler, <em>Nonlinear Functional Analysis and its Applications II/A</em>,, Springer Verlag (1990) · Zbl 0684.47028 · doi:10.1007/978-1-4612-0985-0
[54] A. Zygmund, Smooth functions,, Duke Math. J., 12, 47 (1945) · Zbl 0060.13806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.