\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences

Abstract / Introduction Related Papers Cited by
  • We consider an evolutionary, non-degenerate, symmetric $p$-Laplacian. By symmetric we mean that the full gradient of $p$-Laplacian is replaced by its symmetric part, which causes a breakdown of the Uhlenbeck structure. We derive interior regularity of time derivatives of its local weak solution. To circumvent the space-time growth mismatch, we devise a new local regularity technique of iterations in Nikolskii-Bochner spaces. It is interesting by itself, as it may be modified to provide new regularity results for the full-gradient $p$-Laplacian case with lower-order dependencies. Finally, having our regularity result for time derivatives, we obtain respective regularity of the main part. The Appendix on Nikolskii-Bochner spaces, that includes theorems on their embeddings and interpolations, may be of independent interest.
    Mathematics Subject Classification: 35K55, 35K59, 35K92, 35Q35, 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi, G. Mingione and G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25-60.doi: 10.1016/S0294-1449(03)00031-3.

    [2]

    R. Adams and J. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.

    [3]

    H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35 (2000), 161-177.

    [4]

    H. Amann, Anisotropic function spaces on singular manifolds, preprint http://arxiv.org/pdf/1204.0606.pdf. doi: 10.1002/mana.201100157.

    [5]

    H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.doi: 10.1002/mana.3211860102.

    [6]

    H. Bae and B. Jin, Regularity of non-Newtonian fluids, J. Math. Fluid Mech., 16 (2014), 225-241.doi: 10.1007/s00021-013-0149-y.

    [7]

    H. Beirão da Veiga, Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 233-257.doi: 10.1007/s00021-008-0257-2.

    [8]

    H. Beirão da Veiga, Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 11 (2009), 258-273.doi: 10.1007/s00021-008-0258-1.

    [9]

    H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables, Nonlinear Anal., 75 (2012), 4346-4354.doi: 10.1016/j.na.2012.03.021.

    [10]

    H. Beirão da Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1173-1191.doi: 10.3934/dcdss.2013.6.1173.

    [11]

    H. Beirão da Veiga, P. Kaplický and M. Růžička, Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 13 (2011), 387-404.doi: 10.1007/s00021-010-0025-y.

    [12]

    A. Benedek and R. Panzone, The spaces $L^p$ with mixed norm, Duke Math J., 8 (1961), 301-324.

    [13]

    C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, 1988.

    [14]

    J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, Heiderberg, New York, 1976.

    [15]

    O. Besov, On some families of functional spaces. Imbedding and extension theorems (Russian), Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165.

    [16]

    O. Besov, V. Il'in and S. Nikol'skii, Integral Representations of Functions, and Embedding Theorems (Russian), Nauka, Moscow, 1975.

    [17]

    E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357 (1985), 1-22.doi: 10.1515/crll.1985.357.1.

    [18]

    B. Bojarski, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients (Russian), Mat. Sb. (N. S.), 43 (1957), 451-503.

    [19]

    V. Bögelein, F. Duzaar and G. Mingione, The regularity of general parabolic systems with degenerate diffusion, Mem. Amer. Math. Soc., 221 (2013), no. 1041.doi: 10.1090/S0065-9266-2012-00664-2.

    [20]

    M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids Math. Methods Appl. Sci., 33 (2010), 1995-2010.doi: 10.1002/mma.1314.

    [21]

    J. Burczak, Regularity of solutions to nonlinear non-diagonal evolutionary systems, PhD Thesis, Warsaw 2015, (available at http://mmns.mimuw.edu.pl/phd/Burczak_phd.pdf, accessed 24.06.2016).

    [22]

    J. Burczak, Almost everywhere Hölder continuity of gradients to non-diagonal parabolic systems, manuscripta math., 144 (2014), 51-90.doi: 10.1007/s00229-013-0640-z.

    [23]

    J. Burczak and P. Kaplický, Interior regularity of space derivatives to an evolutionary, symmetric $\varphi$-Laplacian, preprint: arXiv:1507.05843 [math.AP]

    [24]

    F. Crispo and C. Grisanti, On the existence, uniqueness and $C^{1, \gamma} (\O) \cap W^{2,2} (\O)$ regularity for a class of shear-thinning fluids, J. Math. Fluid Mech., 10 (2008), 455-487.doi: 10.1007/s00021-008-0282-1.

    [25]

    E. DiBenedetto, Degenerate Parabolic Systems, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [26]

    F. Duzaar and G. Mingione, Second order parabolic systems, optimal regularity and singular sets of solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 705-751.doi: 10.1016/j.anihpc.2004.10.011.

    [27]

    F. Duzaar, G. Mingione and K. Steffen, Parabolic Systems with Polynomial Growth and Regularity, Memoirs A.M.S. 214, 2011.doi: 10.1090/S0065-9266-2011-00614-3.

    [28]

    L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motion of generalized Newtonian fluids, Ann. Scuola Norm. Sup. Pisa., 9 (2010), 1-46.

    [29]

    J. Frehse and S. Schwarzacher, On regularity of the time derivative for degenerate parabolic systems, SIAM J. Math. Anal., 47 (2015), 3917-3943.doi: 10.1137/141000725.

    [30]

    M. Fuchs and G. Seregin, Global nonlinear evolution problem for generalized Newtonian fluids: local initial regularity of the strong solution, Comput. Math. Appl., 53 (2007), 509-520.doi: 10.1016/j.camwa.2006.02.039.

    [31]

    K. Golovkin, On equivalent normalizations of fractional spaces (Russian), Trudy Mat. Inst. Steklova, 66 (1962), 364-383.

    [32]

    P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45 (1966), 143-206.

    [33]

    B. Jin, On the Caccioppoli inequality of the unsteady Stokes system, Int. J. Numer. Anal. Model. Ser. B, 4 (2013), 215-223.

    [34]

    O. John, A. Kufner and S. Fučík, Function Spaces, Academia, Prague, 1977.

    [35]

    H. Johnen, Inequalities connected with the moduli of smoothness, Mat. Vest., 24 (1972), 289-303.

    [36]

    P. Kaplický, Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 24 (2005), 467-486.doi: 10.4171/ZAA/1251.

    [37]

    P. Kaplický, Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 10 (2008), 71-88.doi: 10.1007/s00021-006-0217-7.

    [38]

    P. Kaplický, J. Málek and J Stará, Global-in-time Hoder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA, 9 (2002), 175-195.doi: 10.1007/s00030-002-8123-z.

    [39]

    J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p \ge 2$, Adv. Differential Equations, 6 (2001), 257-302.

    [40]

    A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math Pures Appl., 9 (1927), 337-425.

    [41]

    T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions definded on a general region, Publ. Res. Inst. Math. Sci., 9 (1974), 325-396.

    [42]

    J. Nečas and V. Sverák, On regularity of solutions of nonlinear parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 1-11.

    [43]

    S. Nikol'skii, Some inequalities for entire functions of finite degree of several variables and their application (Russian), Doklady Akad. Nauk SSSR (N.S.), 76 (1951), 785-788.

    [44]

    P. Rabier, Vector-valued Morrey's embedding theorem and Hölder continuity in parabolic problems, Electron. J. Diff. Equ., 10 (2011), 1-10.

    [45]

    M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, volume 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.doi: 10.1007/BFb0104029.

    [46]

    B. Scharf, H. Schmeisser and W. Sickel, Traces of vector-valued Sobolev spaces, Math. Nachr., 285 (2012), 1082-1106.doi: 10.1002/mana.201100011.

    [47]

    J. Simon, Sobolev, Besov and Nikol'skii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl., 157 (1990), 117-148.doi: 10.1007/BF01765315.

    [48]

    L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.doi: 10.1007/978-3-0348-9193-6.

    [49]

    P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241-266.doi: 10.1007/BF01773507.

    [50]

    H. Triebel, Theory of Function Spaces I, Birkhäuser Verlag, Basel, 1983.doi: 10.1007/978-3-0346-0416-1.

    [51]

    H. Triebel, Theory of Function Spaces III, Birkhäuser Verlag, Basel, 2006.

    [52]

    K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.

    [53]

    E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer Verlag, New York, 1990.doi: 10.1007/978-1-4612-0985-0.

    [54]

    A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47-76.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return