×

Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis. (English) Zbl 1414.35025

Summary: This paper is devoted to study the formation of stationary patterns for a chemotaxis model with nonlinear diffusion and volume-filling effect over a bounded rectangular domain. By using linear stability analysis around the homogeneous steady states we establish conditions for the existence of unstable mode bands that lead to the formation of spatial patterns. We derive the Stuart-Landau equations for the pattern amplitudes by means of weakly nonlinear multiple scales analysis and Fredholm theory. In particular, we find asymptotic expressions for a wide range of patterns sustained by the system. These patterns include mixed-mode, square, hexagonal, and roll stationary configurations. Our analytical results are corroborated by direct simulations of the underlying chemotaxis system.

MSC:

35B36 Pattern formations in context of PDEs
35K57 Reaction-diffusion equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comput. Simulation, 82, 1112-1132 (2012) · Zbl 1320.35170
[2] Gambino, G.; Lombardo, M. C.; Sammartino, M., Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Anal. Real World Appl., 14, 1755-1779 (2013) · Zbl 1270.35088
[3] Gambino, G.; Lombardo, M. C.; Sammartino, M.; Sciacca, V., Turing pattern formation in the Brusselator system with nonlinear diffusion, Phys. Rev. E, 88, Article 042925 pp. (2013)
[4] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and pattern formation for the Lengyel-Epstein system with nonlinear diffusion, Acta Appl. Math., 132, 283-294 (2014) · Zbl 1305.35088
[5] Ghergu, M., Non-constant steady-state solutions for Brusselator type systems, Nonlinearity, 21, 2331-2345 (2008) · Zbl 1156.35022
[6] Iron, D.; Ward, M. J.; Wei, J. C., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150, 1-2, 25-62 (2001) · Zbl 0983.35020
[7] Jin, L.; Wang, Q.; Zhang, Z., Pattern formation in Keller-Segel chemotaxis models with logistic growth, Internat. J. Bifur. Chaos, 26, 2, Article 1650033 pp. (2016) · Zbl 1334.35003
[8] Kelley, C. T., Solving Nonlinear Equations with Newton’s Method (2003), SIAM · Zbl 1031.65069
[9] Kuto, K.; Osaki, K.; Sakurai, T.; Tsujikawa, T., Spatial pattern formation in a chemotaxis-diffusion growth model, Phys. D (2012) · Zbl 1255.35033
[10] Lieberman, G. M., Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36, 5, 1400-1406 (2005) · Zbl 1112.35062
[11] Ma, M.; Wang, Z. A., Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28, 2639-2660 (2015) · Zbl 1331.35185
[12] Ma, M.; Wang, Z. A., Patterns in a generalized volume-filling chemotaxis model with cell proliferation, Anal. Appl., 15, 83-106 (2017) · Zbl 1361.35074
[13] Ma, M.; Ou, C. H.; Wang, Z. A., Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72, 740-766 (2012) · Zbl 1259.35031
[14] Ma, M.; Gao, M. Y.; Tong, C. Q.; Han, Y. Z., Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect, Comput. Math. Appl., 72, 1320-1340 (2016) · Zbl 1366.92030
[15] Ma, M.-J.; Li, H.; Gao, M. Y.; Tao, J. C.; Han, Y. Z., Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect, Appl. Math. J. Chinese Univ., 32, 1, 108-116 (2017) · Zbl 1389.35204
[16] Painter, K. J.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10, 501-543 (2002) · Zbl 1057.92013
[17] Painter, K. J.; Hillen, T., Spatio-temporal chaos in a chemotaxis model, Phys. D, 240, 363-375 (2011) · Zbl 1255.37026
[18] Pang, P. Y.H.; Wang, M. X., Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200, 245-274 (2004) · Zbl 1106.35016
[19] Shi, J.; Wang, X., On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246, 2788-2812 (2009) · Zbl 1165.35358
[20] Turing, A., The chemical basis of morphogenesis, Philos. Trans. R. Soc. B, 237, 37-72 (1957) · Zbl 1403.92034
[21] Wang, M. X., Non-constant positive steady states of the Sel’kov model, J. Differential Equations, 190, 2, 600-620 (2003) · Zbl 1163.35362
[22] Wang, Q.; Yan, J.; Gai, C., Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67, 3, Article 51 pp. (2016) · Zbl 1353.92025
[23] Wang, Q.; Yang, J.; Zhang, L., Time periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: effect of cellular growth, Discrete Contin. Dyn. Syst. Ser. B, 22, 9, 3547-3574 (2017) · Zbl 1367.92019
[24] Wang, Z. A., On chemotaxis models with cell population interactions, Math. Model. Nat. Phenom., 5, 173-190 (2010) · Zbl 1197.35140
[25] Wang, Z. A.; Hillen, T., Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17, Article 037108 pp. (2007) · Zbl 1163.37383
[26] Wang, Z. A.; Winkler, M.; Wrzosek, D., Global regularity versus infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion, SIAM J. Math. Anal., 44, 3502-3525 (2012) · Zbl 1277.35223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.