×

Pattern formation in Keller-Segel chemotaxis models with logistic growth. (English) Zbl 1334.35003

Summary: We investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate \(\chi\) increases. Then using Crandall-Rabinowitz local theory with \(\chi\) being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.

MSC:

35B36 Pattern formations in context of PDEs
35K57 Reaction-diffusion equations
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs

References:

[1] Benson, D., Sherratt, J. & Maini, P. [1993] ” Diffusion driven instability in an inhomogeneous domain,” Bull. Math. Biol.55, 365-384. genRefLink(16, ’S0218127416500334BIB001’, ’10.1007 · Zbl 0758.92003
[2] Chertock, A., Chertock, A., Wang, X. & Wu, Y. [2012] ” On a chemotaxis model with saturated chemotactic flux,” Kinetic and Related Models5, 51-95. genRefLink(16, ’S0218127416500334BIB002’, ’10.3934
[3] Crandall, M. G. & Rabinowitz, P. H. [1971] ” Bifurcation from simple eigenvalues,” J. Funct. Anal.8, 321-340. genRefLink(16, ’S0218127416500334BIB003’, ’10.1016 · Zbl 0219.46015
[4] Crandall, M. G. & Rabinowitz, P. H. [1973] ” Bifurcation, perturbation of simple eigenvalues, and linearized stability,” Arch. Rat. Mech. Anal.25, 161-180. · Zbl 0275.47044
[5] Hillen, T. & Painter, K. J. [2009] ” A user’s guide to PDE models for chemotaxis,” J. Math. Biol.58, 183-217. genRefLink(16, ’S0218127416500334BIB005’, ’10.1007
[6] Horstmann, D. [2011] ” Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,” J. Nonlin. Sci.21, 231-270. genRefLink(16, ’S0218127416500334BIB006’, ’10.1007 · Zbl 1262.35203
[7] Kato, T. [1996] Functional Analysis, Springer Classics in Mathematics (Springer-Verlag, Berlin-Heidelberg).
[8] Keller, E. F. & Segel, L. A. [1971] ” Traveling bands of chemotactic bacteria: A theoretical analysis,” J. Theor. Biol.30, 235-248. genRefLink(16, ’S0218127416500334BIB008’, ’10.1016
[9] Kuto, K., Osaki, K., Sakurai, T. & Tsujikawa, T. [2012] ” Spatial pattern formation in a chemotaxis-diffusion-growth model,” Physica D241, 1629-1639. genRefLink(16, ’S0218127416500334BIB009’, ’10.1016 · Zbl 1255.35033
[10] Ma, M., Ou, C. & Wang, Z. [2012] ” Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability,” SIAM J. Appl. Math.72, 740-766. genRefLink(16, ’S0218127416500334BIB010’, ’10.1137 · Zbl 1259.35031
[11] Ma, M. & Wang, Z. [2015] ” Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect,” Nonlinearity28, 2639-2660. genRefLink(16, ’S0218127416500334BIB011’, ’10.1088
[12] Okubo, A. [1980] Diffusion and Ecological Problems: Mathematical Models (Springer-Verlag, Heidelberg). · Zbl 0422.92025
[13] Osaki, K. & Yagi, A. [2001] ” Finite dimensional attractor for one-dimensional Keller-Segel equations,” Funkcialaj Ekvacioj44, 441-469. · Zbl 1145.37337
[14] Osaki, K., Tsujikawa, T., Yagi, A. & Mimura, M. [2002] ” Exponential attractor for a chemotaxis-growth system of equations,” Nonlin. Anal.: Th. Meth. Appl.51, 119-144. genRefLink(16, ’S0218127416500334BIB014’, ’10.1016
[15] Pejsachowicz, J. & Rabier, P. J. [1998] ” Degree theory for C1 Fredholm mappings of index 0,” J. d’Analyse Mathématique76, 289-319. genRefLink(16, ’S0218127416500334BIB015’, ’10.1007
[16] Segel, L. & Jackson, J. [1972] ” Dissipative structure: An explanation and an ecological example,” J. Theoret. Biol.37, 545-559. genRefLink(16, ’S0218127416500334BIB016’, ’10.1016
[17] Shi, J. & Wang, X. [2009] ” On global bifurcation for quasilinear elliptic systems on bounded domains,” J. Diff. Eqs.246, 2788-2812. genRefLink(16, ’S0218127416500334BIB017’, ’10.1016 · Zbl 1165.35358
[18] Simonett, G. [1995] ” Center manifolds for quasilinear reaction-diffusion systems,” Diff. Integr. Eqs.8, 753-796. · Zbl 0815.35054
[19] Tello, J. I. & Winkler, M. [2007] ” A chemotaxis system with logistic source,” Commun. Part. Diff. Eqs.32, 849-877. genRefLink(16, ’S0218127416500334BIB019’, ’10.1080 · Zbl 1121.37068
[20] Tsujikawa, T., Kuto, K., Miyamoto, Y. & Izuhara, H. [2015] ” Stationary solutions for some shadow system of the Keller-Segel model with logistic growth,” Discr. Contin. Dyn. Syst., Ser. S8, 1023-1034. genRefLink(16, ’S0218127416500334BIB020’, ’10.3934 · Zbl 1320.35061
[21] Turing, A. [1952] ” The chemical basis of morphogenesis,” Phil. Trans. Roy. Soc. Lond. B237, 37-72. genRefLink(16, ’S0218127416500334BIB021’, ’10.1098
[22] Wang, X. & Xu, Q. [2013] ” Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem,” J. Math. Biol.66, 1241-1266. genRefLink(16, ’S0218127416500334BIB022’, ’10.1007 · Zbl 1301.92006
[23] Wang, Q., Gai, C. & Yan, J. [2015] ” Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth,” Discr. Contin. Dyn. Syst.35, 1239-1284. genRefLink(16, ’S0218127416500334BIB023’, ’10.3934 · Zbl 1327.92050
[24] Winkler, M. [2010a] ” Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,” Commun. Part. Diff. Eqs.35, 1516-1537. genRefLink(16, ’S0218127416500334BIB024’, ’10.1080 · Zbl 1290.35139
[25] Winkler, M. [2010b] ” Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,” J. Diff. Eqs.248, 2889-2905. genRefLink(16, ’S0218127416500334BIB025’, ’10.1016 · Zbl 1190.92004
[26] Winkler, M. [2011] ” Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction,” J. Math. Anal. Appl.384, 261-272. genRefLink(16, ’S0218127416500334BIB026’, ’10.1016 · Zbl 1241.35028
[27] Xiang, T. [2015] ” Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source,” J. Diff. Eqs.258, 4275-4323. genRefLink(16, ’S0218127416500334BIB027’, ’10.1016 · Zbl 1323.35072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.