×

New RK type time-integration methods for stiff convection-diffusion-reaction systems. (English) Zbl 1521.65065

Summary: Convection-diffusion-reaction equations (CDREs) are extensively used to model the various physical processes, which are generally stiff in both reaction and diffusion terms. This paper discusses a new class of implicit-explicit Runge-Kutta (IMEX RK) type methods for numerical simulations of the convection-diffusion-reaction systems. The developed approach does not need to invert the coefficient matrix, despite being implicit in nature. The Fourier stability analysis is performed to gauge the properties of the developed methods using one- and two-dimensional scalar CDRE as model systems. Additionally, numerical simulation of the one-dimensional inhomogeneous linear CDRE, contaminant transport with kinetic Langmuir sorption model, and two-dimensional chemotaxis model that incorporates volume-filling effect and nonlinear diffusion are used to validate the effectiveness and robustness of the developed methods. The numerical solutions match the exact solutions discussed in the literature very well.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L04 Numerical methods for stiff equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Najm, H. N.; Wyckoff, P. S.; Knio, O. M., A semi-implicit numerical scheme for reacting flow I: Stiff chemistry, J Comput Phys, 143, 381-402 (1998) · Zbl 0936.76064
[2] Bear, J., Hydraulics of groundwater (2007), Dover, Minneola
[3] Nozakura, T.; Ikeuchi, S., Formation of dissipative structures in galaxies, Astrophys J, 279, 40-52 (1984)
[4] Turing, A. M., The chemical basis of morphogenesis, Philos Trans R Soc London [Biol], 237, 37-72 (1952) · Zbl 1403.92034
[5] Jin, L.; Wang, Q.; Zhang, Z., Pattern formation in Keller-Segel chemotaxis models with logistic growth, Int J Bifurcation Chaos, 26, Article 1650033 pp. (2016) · Zbl 1334.35003
[6] Rüdiger, S.; Nicola, E. M.; Casademunt, J.; Kramer, L., Theory of pattern forming systems under traveling-wave forcing, Phys Rep, 447, 73-111 (2007)
[7] Sagués, F.; Míguez, D. G.; Nicola, E. M.; Muñuzuri, A. P.; Casademunt, J.; Kramer, L., Travelling-strip forcing of Turing patterns, Physica D, 199, 235-242 (2004) · Zbl 1058.92007
[8] Mei, Z., Numerical bifurcation analysis for reaction-diffusion equations (2000), Springer, Verlag: Springer, Verlag Alemania · Zbl 0952.65105
[9] Sheu, T. W.H.; Wang, S. K.; Lin, R. K., An implicit scheme for solving the convection-diffusion-reaction equation in two dimensions, J Comput Phys, 164, 123-142 (2000) · Zbl 0995.76065
[10] Polezhaev, V. I., Numerical solution of the system of two-dimensional unsteady Navier-Stokes equations for a compressible gas in a closed region, Fluid Dyn, 2, 103-111 (1967) · Zbl 0173.28001
[11] Kalita, J. C., A dual-purpose high order compact approach for pattern formation using Gray-Scott model, Int J Appl Comput Math, 3, 2747-2760 (2017) · Zbl 1397.76094
[12] Manoranjan, V. S.; Stauffer, T. B., Exact solution for contaminant transport with kinetic Langmuir sorption, Water Resour Res, 32, 749-752 (1996)
[13] Childress, S.; Percus, J. K., Nonlinear aspects of chemotaxis, Math Biosci, 56, 217-237 (1981) · Zbl 0481.92010
[14] Keller, E. F.; Segel, L. A., Model for chemotaxis, J Theoret Biol, 30, 225-234 (1971) · Zbl 1170.92307
[15] Kuto, K.; Osaki, K.; Sakurai, T.; Tsujikawa, T., Spatial pattern formation in a chemotaxis-diffusion growth model, Physica D, 241, 1629-1639 (2012) · Zbl 1255.35033
[16] Courant, R.; Friedrichs, K.; Lewy, H., Partial differential equations of mathematical physics, Math Ann, 100, 32-74 (1928) · JFM 54.0486.01
[17] Patlak, C. S., Random walk with persistence and external bias, Bull Math Biophys, 15, 311-338 (1953) · Zbl 1296.82044
[18] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J Theoret Biol, 26, 399-415 (1970) · Zbl 1170.92306
[19] Wang, Z.; Hillen, T., Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17, Article 037108 pp. (2007) · Zbl 1163.37383
[20] Ma, M.; Gao, M.; C.-González, R., Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis, J Math Anal Appl, 475, 1883-1909 (2019) · Zbl 1414.35025
[21] Yadav, V. S.; Ganta, N.; Mahato, B.; Rajpoot, M. K.; Bhumkar, Y. G., New time-marching methods for compressible Navier-Stokes equations with applications to aeroacoustics problems, Appl Math Comput, 419, Article 126863 pp. (2022) · Zbl 1510.76117
[22] Butcher, J. C., Numerical methods for ordinary differential equations (2016), Wiley: Wiley Chichester · Zbl 1354.65004
[23] Kupka, F.; Happenhofer, N.; Higueras, I.; Koch, O., Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics, J Comput Phys, 231, 3561-3586 (2012) · Zbl 1241.85010
[24] Palenzuela, C.; Lehner, L.; Reula, O.; Rezzolla, L., Beyond ideal MHD: towards a more realistic modeling of relativistic astrophysical plasmas, Mon Not R Aston Soc, 394, 1727-1740 (2009)
[25] Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S., Fundamentals of heat and mass transfer (2007), John Wiley & Sons
[26] Mittal, R. C.; Jain, R. K., Redefined cubic B-splines collocation method for solving convection-diffusion equations, Appl Math Model, 36, 5555-5573 (2012) · Zbl 1254.76101
[27] Vichnevetsky, R.; Bowles, J. B., Fourier analysis of numerical approximations of hyperbolic equations (1987), SIAM
[28] Sengupta, T. K., High accuracy computing methods: Fluid flows and wave phenomena (2013), Cambridge Univ. Press · Zbl 1454.76002
[29] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J Comput Phys, 103, 16-42 (1992) · Zbl 0759.65006
[30] Suman, V. K.; Sengupta, T. K.; Prasad, C. J.D.; Mohan, K. S.; Sanwalia, D., Spectral analysis of finite difference schemes for convection diffusion equation, Comput & Fluids, 150, 95-114 (2017) · Zbl 1390.65080
[31] Sengupta, T. K.; Dipankar, A.; Sagaut, P., Error dynamics: Beyond von Neumann analysis, J Comput Phys, 226, 1211-1218 (2007) · Zbl 1125.65337
[32] Maurya, P. K.; Yadav, V. S.; Mahato, B.; Ganta, N.; Rajpoot, M. K.; Bhumkar, Y. G., New optimized implicit-explicit Runge-Kutta methods with applications to the hyperbolic conservation laws, J Comput Phys, 446, Article 110650 pp. (2021) · Zbl 07516460
[33] Chu, P. C.; Fan, C., A three-point combined compact difference scheme, J Comput Phys, 140, 370-399 (1998) · Zbl 0923.65071
[34] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J Sci Comput, 25, 129-155 (2005) · Zbl 1203.65111
[35] Liu, L.; Clemence, D. P.; Mickens, R. E., A nonstandard finite difference scheme for contaminant transport with kinetic Langmuir sorption, Numer Meth Par Diff Eqn, 27, 767-785 (2011) · Zbl 1216.92063
[36] Painter, K. J.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can Appl Math Q, 10, 501-543 (2002) · Zbl 1057.92013
[37] Ma, M.; Wang, Z. A., Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28, 2639-2660 (2015) · Zbl 1331.35185
[38] Wang, Z. A., On chemotaxis models with cell population interactions, Math Model Nat Phenom, 5, 173-190 (2010) · Zbl 1197.35140
[39] Ma, M.; Wang, Z., Patterns in a generalized volume-filling chemotaxis model with cell proliferation, Anal Appl, 1-24 (2015)
[40] Ma, M.; Gao, M.; Tong, C.; Han, Y., Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect, Comput Math Appl, 72, 1320-1340 (2016) · Zbl 1366.92030
[41] Koto, T., IMEX Runge-Kutta schemes for reaction-diffusion equations, J Comput Appl Math, 215, 182-195 (2008) · Zbl 1141.65072
[42] Sanz-Serna, J. M.; Verwer, J. G.; Hundsdorfer, W. H., Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations, Numer Math, 50, 405-418 (1986) · Zbl 0589.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.