×

Wild pseudohyperbolic attractor in a four-dimensional Lorenz system. (English) Zbl 1472.34106

The authors consider the 4D extension of the Lorenz system \begin{align*} & \dot{x}=\sigma \left( y-x \right), \\ & \dot{y}=x\left( r-z \right)-y, \\ & \dot{z}=xy-bz+\mu w, \\ & \dot{w}=-bw-\mu z, \\ \end{align*} where \(\sigma ,r,b,\mu \) are system parameters. With the help of numerical experiments, the authors show that the system under consideration has a so-called wild pseudohyperbolic spiral attractor [D. V. Turaev and L. P. Shil’nikov, Sb. Math. 189, No. 2, 137–160 (1998; Zbl 0927.37017); translation from Mat. Sb. 189, No. 2, 291–314 (1998)], that is, pseudohyperbolic, spiral (contains a saddle-focus equilibrium), and wild (contains a hyperbolic set with homoclinic tangencies).

MSC:

34D45 Attractors of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Citations:

Zbl 0927.37017

Software:

RODES

References:

[1] Afraimovich V S, Bykov V V and Shilnikov L P 1977 On the origin and structure of the Lorenz attractor Dokl. Akad. Nauk SSSR234 336-9 · Zbl 0451.76052
[2] Afraimovich V S, Bykov V V and Shilnikov L P 1982 Attractive nonrough limit sets of Lorenz-attractor type Trans. Mosc. Math. Soc.44 150-212 · Zbl 0506.58023
[3] Aframovich V S and Shilnikov L P 1983 Strange attractors and quasiattractors Nonlinear Dynamics and Turbulence ed G I Barenblatt, G Iooss and D D Joseph (Boston, MA: Pitmen) · Zbl 0532.58018
[4] Aframovich V S and Shilnikov L P 1983 Invariant two-dimensional tori, their breakdown and stochasticity Methods of Qualitative Theory of Differential Equations pp 3-26 ed E A Leontovich-Andronova · Zbl 0751.58024
[5] Aframovich V S and Shilnikov L P 1991 Am. Math. Soc. Transl.149 201-12 (Engl. Transl.) · Zbl 0751.58024 · doi:10.1090/trans2/149/12
[6] Arneodo A, Coullet P and Tresser C 1981 Possible new strange attractors with spiral structure Commun. Math. Phys.79 573-9 · Zbl 0485.58013 · doi:10.1007/bf01209312
[7] Arneodo A, Coullet P and Tresser C 1982 Oscillators with chaotic behavior: an illustration of a theorem by Shil’nikov J. Stat. Phys.27 171-82 · Zbl 0522.58033 · doi:10.1007/bf01011745
[8] Arneodo A, Coullet P H, Spiegel E A and Tresser C 1985 Asymptotic chaos Physica D 14 327-47 · Zbl 0595.58030 · doi:10.1016/0167-2789(85)90093-4
[9] Bakhanova Y V, Kazakov A O, Korotkov A G, Levanova T A and Osipov G V 2018 Spiral attractors as the root of a new type of ‘bursting activity’ in the Rosenzweig-MacArthur model Eur. Phys. J. Spec. Top.227 959-70 · doi:10.1140/epjst/e2018-800025-6
[10] Barrio R, Shilnikov A and Shilnikov L 2012 Kneadings, symbolic dynamics and painting Lorenz chaos Int. J. Bifurcation Chaos22 1230016 · Zbl 1258.37035 · doi:10.1142/s0218127412300169
[11] Benedicks M and Carleson L 1991 The dynamics of the Henon map Ann. Math.133 73-169 · Zbl 0724.58042 · doi:10.2307/2944326
[12] Bobrovsky A, Kazakov A, Korenkov I and Safonov K 2019 On the boundary between Lorenz attractor and quaisattractor in Shimizu-Morioka system The 7th Bremen Summer School and Symp. Dynamical Systems—Pure and Applied Books of Abstracts 38-40
[13] Bonatti C and Diaz L J 1996 Persistent nonhyperbolic transitive diffeomorphisms Ann. Math.143 357-96 · Zbl 0852.58066 · doi:10.2307/2118647
[14] Bonatti C and da Luz A 2017 Star fows and multisingular hyperbolicity arXiv:1705.05799
[15] Bonatti C, Díaz L and Pujals E 2003 A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources Ann. Math.158 355-418 · Zbl 1049.37011 · doi:10.4007/annals.2003.158.355
[16] Bykov V V and Shilnikov A L 1989 On the boundaries of the domain of existence of the Lorenz attractor Methods of Qualitative Theory and Bifurcation Theory pp 151-9 · Zbl 0803.34049
[17] Bykov V V and Shilnikov A L 1992 Sel. Math. Sov.11 375-82 (Engl. Transl.)
[18] Bykov V V 1977 The generation of periodic motions from the separatrix contour of a three-dimensional system Usp. Mat. Nauk32 213
[19] Bykov V V 1988 On the generation of a non-trivial hyperbolic set from a contour formed by separatrices of saddles Methods of Qualitative Theory and Bifurcation Theory pp 22-32
[20] Bykov V V 1993 The bifurcations of separatrix contours and chaos Physica D 62 290-9 · Zbl 0799.58054 · doi:10.1016/0167-2789(93)90288-c
[21] Capiński M, Turaev D and Zgliczyński P 2018 Computer assisted proof of the existence of the Lorenz attractor in the Shimizu-Morioka system Nonlinearity31 5410-40 · Zbl 1405.34048 · doi:10.1088/1361-6544/aae032
[22] Capiński M J and Wasieczko-Zajac A 2017 Computer-assisted proof of Shil’nikov homoclinics: with application to the Lorenz-84 model SIAM J. Appl. Dyn. Syst.16 1453-73 · Zbl 1371.34061 · doi:10.1137/16M1079956
[23] Capiński M J and Zgliczyński P 2017 Beyond the Melnikov method: a computer assisted approach J. Differ. Equ.262 365-417 · Zbl 1368.37035 · doi:10.1016/j.jde.2016.09.032
[24] Chua L, Komuro M and Matsumoto T 1986 The double scroll family IEEE Trans. Circuits Syst.33 1072-118 · Zbl 0634.58015 · doi:10.1109/tcs.1986.1085869
[25] Garashchuk I R, Sinelshchikov D I, Kazakov A O and Kudryashov N A 2019 Hyperchaos and multistability in the model of two interacting microbubble contrast agents Chaos29 063131 · Zbl 1416.37069 · doi:10.1063/1.5098329
[26] Gaspard P, Kapral R and Nicolis G 1984 Bifurcation phenomena near homoclinic systems: a two-parameter analysis J. Stat. Phys.35 697-727 · Zbl 0588.58055 · doi:10.1007/bf01010829
[27] Gaspard P and Nicolis G 1983 What can we learn from homoclinic orbits in chaotic dynamics? J. Stat. Phys.31 499-518 · Zbl 0587.58035 · doi:10.1007/bf01019496
[28] Gavrilov N K and Shilnikov L P 1792 On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, I Sb. Math17 467-85 · Zbl 0255.58006 · doi:10.1070/SM1972v017n04ABEH001597
[29] Gavrilov N K and Shilnikov L P 1793 On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, II Sb. Math19 139-56 · Zbl 0273.58009 · doi:10.1070/SM1973v019n01ABEH001741
[30] Chigarev V, Kazakov A and Pikovsky A 2020 Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller Chaos30 073114 · Zbl 1455.37040 · doi:10.1063/5.0007230
[31] Creaser J L, Krauskopf B and Osinga H M 2017 Finding first foliation tangencies in the Lorenz system SIAM J. Appl. Dyn. Syst.16 2127-64 · Zbl 1381.37097 · doi:10.1137/17m1112716
[32] Figueras J L private communication.
[33] Ginelli F, Poggi P, Turchi A, Chate H, Livi R and Politi A 2007 Characterizing dynamics with covariant Lyapunov vectors Phys. Rev. Lett.99 130601 · doi:10.1103/physrevlett.99.130601
[34] Golmakani A and Homburg A J 2011 Lorenz attractors in unfoldings of homoclinic-flip bifurcations Dyn. Syst.26 61-76 · Zbl 1268.37023 · doi:10.1080/14689367.2010.503186
[35] Gonchenko A S and Gonchenko S V 2016 Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps Physica D 337 43-57 · Zbl 1376.37047 · doi:10.1016/j.physd.2016.07.006
[36] Gonchenko A, Gonchenko S, Kazakov A and Turaev D 2014 Simple scenarios of onset of chaos in three-dimensional maps Int. J. Bifurcation Chaos24 1440005 · Zbl 1300.37024 · doi:10.1142/s0218127414400057
[37] Gonchenko A S, Gonchenko S V and Kazakov A O 2013 Richness of chaotic dynamics in nonholonomic models of a Celtic stone Regul. Chaotic Dyn.18 521-38 · Zbl 1417.37222 · doi:10.1134/s1560354713050055
[38] Gonchenko A S, Gonchenko S V, Kazakov A O and Kozlov A D 2018 Elements of contemporary theory of dynamical chaos: a tutorial. Part I. Pseudohyperbolic attractors Int. J. Bifurcation Chaos28 1830036 · Zbl 1468.37002 · doi:10.1142/s0218127418300367
[39] Gonchenko A S, Gonchenko S V, Gonchenko S V and Shilnikov L P 2012 Towards scenarios of chaos appearance in three-dimensional maps Nelin. Dinam.8 3-28 (in Russian) · doi:10.20537/nd1201001
[40] Gonchenko A S and Samylina E A 2019 On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a celtic stone Radiophys. Quantum Electron.62 369-84 · doi:10.1007/s11141-019-09984-9
[41] Gonchenko S V 1983 Stable periodic motions in systems close to a structurally unstable homoclinic curve Math. Notes Acad. Sci. USSR33 384-9 · Zbl 0548.58020 · doi:10.1007/bf01158287
[42] Gonchenko S, Gonchenko A and Kazakov A 2020 On discrete pseudohyperbolic attractors of Lorenz type (arXiv:2005.02778)
[43] Gonchenko S V, Gonchenko A S, Ovsyannikov I I and Turaev D V 2013 Examples of Lorenz-like attractors in hénon-like maps Math. Model. Nat. Phenom.8 48-70 · Zbl 1331.37040 · doi:10.1051/mmnp/20138504
[44] Gonchenko S V, Gonchenko V S and Tatjer J C 2007 Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps Regul. Chaotic Dyn.12 233-66 · Zbl 1229.37040 · doi:10.1134/s156035470703001x
[45] Gonchenko S V, Meiss J D and Ovsyannikov I I 2006 Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation Regul. Chaotic Dyn.11 191-212 · Zbl 1164.37306 · doi:10.1070/rd2006v011n02abeh000345
[46] Gonchenko S V and Ovsyannikov I I 2013 On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors Math. Model. Nat. Phenom.8 71-83 · Zbl 1331.37066 · doi:10.1051/mmnp/20138505
[47] Gonchenko S and Ovsyannikov I 2017 Homoclinic tangencies to resonant saddles and discrete Lorenz attractors Discrete Continuous Dyn. Syst. - Ser. S 10 273-88 · Zbl 1372.37049 · doi:10.3934/dcdss.2017013
[48] Gonchenko S V, Ovsyannikov I I, Simó C and Turaev D 2005 Three-dimensional hénon-like maps and wild Lorenz-like attractors Int. J. Bifurcation Chaos15 3493-508 · Zbl 1097.37023 · doi:10.1142/s0218127405014180
[49] Gonchenko S V, Ovsyannikov I I and Tatjer J C 2014 Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points Regul. Chaotic Dyn.19 495-505 · Zbl 1335.37031 · doi:10.1134/s1560354714040054
[50] Gonchenko S V, Shil’nikov L P and Turaev D V 1996 Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits Chaos6 15-31 · Zbl 1055.37578 · doi:10.1063/1.166154
[51] Gonchenko S V, Shil’nikov L P and Turaev D V 1997 Quasiattractors and homoclinic tangencies Comput. Math. Appl.34 195-227 · Zbl 0889.58056 · doi:10.1016/s0898-1221(97)00124-7
[52] Gonchenko S, Turaev D and Shilnikov L 2007 Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps Nonlinearity20 241-75 · Zbl 1132.37023 · doi:10.1088/0951-7715/20/2/002
[53] Gonchenko S V, Shilnikov L P and Turaev D V 2008 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I Nonlinearity21 923-72 · Zbl 1160.37019 · doi:10.1088/0951-7715/21/5/003
[54] Gonchenko S V, Shilnikov L P and Turaev D V 2009 On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors Regul. Chaotic Dyn.14 137-47 · Zbl 1229.37041 · doi:10.1134/s1560354709010092
[55] Gonchenko S V, Simó C and Vieiro A 2013 Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight Nonlinearity26 621-78 · Zbl 1286.37023 · doi:10.1088/0951-7715/26/3/621
[56] Gonchenko S V and Turaev D V 2017 On three types of dynamics and the notion of attractor Proc. Steklov Inst. Math.297 116-37 · Zbl 1377.37040 · doi:10.1134/s0081543817040071
[57] Gonchenko S V, Turaev D V and Shilnikov L P 1991 On models with non-rough Poincare homoclinic curves Docl. Math.320 269-72
[58] Gonchenko S V, Shil’nikov L P and Turaev D V 1993 On models with non-rough Poincaré homoclinic curves Physica D 62 1-14 · Zbl 0783.58049 · doi:10.1016/0167-2789(93)90268-6
[59] Gonchenko S V, Turaev D V and Shilnikov L P 1993 On the existence of Newhouse regions near systems with non-rough Poincare homoclinic curve (multidimensional case) Russ. Acad. Sci. Dokl. Math.47 410-5 · Zbl 0864.58043
[60] Gorodetski A S and Ilyashenko Y S 1999 Certain new robust properties of invariant sets and attractors of dynamical systems Funct. Anal. Appl.33 95-105 · Zbl 0939.37015 · doi:10.1007/bf02465190
[61] Gourmelon N 2014 Steps towards a classification of Cr-generic dynamics close to homoclinic points (arXiv:1410.1758)
[62] Hayashi S 1997 Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows Ann. Math.145 81-137 · Zbl 0871.58067 · doi:10.2307/2951824
[63] Hénon M 1976 A two-dimensional mapping with a strange attractor Commun. Math. Phys.50 69-77 · Zbl 0576.58018 · doi:10.1007/bf01608556
[64] Immler F 2018 A verified ODE solver and the Lorenz attractor J. Autom. Reasoning61 73-111 · Zbl 1448.68460 · doi:10.1007/s10817-017-9448-y
[65] Kuznetsov S P 2013 Dynamical chaos and hyperbolic attractors: from mathematics to physics Usp. Fiz. Nauk61 73-111 · doi:10.3367/UFNr.0181.201102a.0121
[66] Kuznetsov Y A, De Feo O and Rinaldi S 2001 Belyakov homoclinic bifurcations in a tritrophic food chain model SIAM J. Appl. Math.62 462-87 · Zbl 1015.34031 · doi:10.1137/s0036139900378542
[67] Kuptsov P V and Parlitz U 2012 Theory and computation of covariant Lyapunov vectors J. Nonlinear Sci.22 727-62 · Zbl 1301.37065 · doi:10.1007/s00332-012-9126-5
[68] Kuptsov P V and Kuznetsov S P 2018 Lyapunov analysis of strange pseudohyperbolic attractors: angles between tangent subspaces, local volume expansion and contraction Regul. Chaotic Dyn.23 908-32 · Zbl 1412.37045 · doi:10.1134/s1560354718070079
[69] Li D 2016 Homoclinic bifurcations that give rise to heterodimensional cycles near a saddle-focus equilibrium Nonlinearity30 173-206 · Zbl 1381.37061 · doi:10.1088/1361-6544/30/1/173
[70] Li D and Turaev D V 2017 Existence of heterodimensional cycles near Shilnikov loops in systems with a Z2 symmetry Discrete Continuous Dyn. Syst. - Ser. A 37 4399-437 · Zbl 1360.37129 · doi:10.3934/dcds.2017189
[71] Li M-C and Malkin M 2003 Smooth symmetric and Lorenz models for unimodal maps Int. J. Bifurcation Chaos13 3353-71 · Zbl 1057.37037 · doi:10.1142/s0218127403008545
[72] Lorenz E N 1963 Deterministic nonperiodic flow J. Atmos. Sci.20 130-41 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
[73] Malkin M I 1985 Rotation intervals and dynamics of Lorenz-like maps Methods of Qualitative Theory of Differential Equations pp 122-39
[74] Mañé R 1978 Persistent manifolds are normally hyperbolic Trans. Am. Math. Soc.246 261 · Zbl 0362.58014 · doi:10.1090/s0002-9947-1978-0515539-0
[75] Mora L and Viana M 1993 Abundance of strange attractors Acta Math.171 1-71 · Zbl 0815.58016 · doi:10.1007/bf02392766
[76] Newhouse S E 1970 Nondensity of axiom A(a) on S Glob. Anal.1 191 · Zbl 0206.25801 · doi:10.1090/pspum/014/0277005
[77] Newhouse S E 1974 Diffeomorphisms with infinitely many sinks Topology13 9-18 · Zbl 0275.58016 · doi:10.1016/0040-9383(74)90034-2
[78] Newhouse S E 1979 The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms Publ. Math. de L’Institut des Hautes Sci.50 101-51 · Zbl 0445.58022 · doi:10.1007/bf02684771
[79] Ovsyannikov I I and Turaev D V 2017 Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model Nonlinearity30 115-37 · Zbl 1367.34051 · doi:10.1088/1361-6544/30/1/115
[80] Ovsyannikov I M and Shilnikov L P 1986 On systems with a saddle-focus homoclinic curve Math. USSR Sb.58 557-74 · Zbl 0628.58044 · doi:10.1070/SM1987v058n02ABEH003120
[81] Ovsyannikov I M and Shilnikov L P 1992 Systems with a homoclinic curve of multi-dimensional saddle-focus type, and spiral chaos Math. USSR Sb.73 415-43 · Zbl 0774.58030 · doi:10.1070/SM1992v073n02ABEH002553
[82] Palis J and Yoccoz J-C 1994 Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension Acta Math.172 91-136 · Zbl 0817.58004 · doi:10.2307/2118546
[83] Pujals E R 2006 From Hyperbolicity to Dominated Splitting · Zbl 1147.37018
[84] Pujals E and Sambarino M 2009 On the dynamics of dominated splitting Ann. Math.169 675-740 · Zbl 1178.37032 · doi:10.4007/annals.2009.169.675
[85] Roshchin N V 1978 Unsafe stability boundaries of the Lorentz model J. Appl. Math. Mech.42 1038-41 · Zbl 0422.35010 · doi:10.1016/0021-8928(78)90049-7
[86] Rössler O E 1976 An equation for continuous chaos Phys. Lett. A 57 397-8 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[87] Rossler O E 1979 An equation for hyperchaos Phys. Lett. A 71 155-7 · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[88] Ruelle D 1981 Small random perturbations of dynamical systems and the definition of attractors Commun. Math. Phys.82 137-51 · Zbl 0482.58017 · doi:10.1007/bf01206949
[89] Shilnikov A L 1986 Bifurcation and chaos in the Morioka-Shimizu system Methods of Qualitative Theory of Differential Equations pp 180-93
[90] Shilnikov A L 1986 Sel. Math. Sov.10 105-17 (Engl. Transl.)
[91] Shilnikov A L 1993 On bifurcations of the Lorenz attractor in the Shimizu-Morioka model Physica D 62 338-46 · Zbl 0783.58052 · doi:10.1016/0167-2789(93)90292-9
[92] Shilnikov L P 1965 A case of the existence of a denumerate set of periodic motions Sov. Math. Docl.6 163-6 · Zbl 0136.08202
[93] Shilnikov L P 1970 A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type Math. USSR Sb.10 91-102 · Zbl 0216.11201 · doi:10.1070/SM1970v010n01ABEH001588
[94] Shilnikov L P 1980 Bifurcation theory and the Lorenz model The Hopf Bifurcation and Its Applications ed J Marsden and M McCraken (Paris: Mir) pp 317-36
[95] Shilnikov L P 1981 Bifurcation theory and quasihyperbolic attractors Usp. Mat. Nauk36 240
[96] Shilnikov L P 2017 Selected Works of L.P. Shilnikov ed V S Afraimovich, L A Belyakov, S V Gonchenko, L M Lerman, A D Morozov, D V Turaev and A L Shilnikov (Nizhny Novgorod: Lobachevsky State University)
[97] Shilnikov L P, Shilnikov A L, Turaev D V and Chua L O 1998 Methods of Qualitative Theory in Nonlinear Dynamics, Part 1 (Singapore: World Scientific) · Zbl 0941.34001 · doi:10.1142/9789812798596
[98] Shilnikov L P, Shilnikov A L, Turaev D V and Chua L O 1998 Methods of Qualitative Theory in Nonlinear Dynamics, Part 2 (Singapore: World Scientific) · Zbl 0941.34001 · doi:10.1142/9789812798596
[99] Shilnikov A L, Shilnikov L P and Turaev D V 1993 Normal forms and Lorenz attractors Int. J. Bifurcation Chaos3 1123-39 · Zbl 0885.58080 · doi:10.1142/S0218127493000933
[100] Shimizu T and Morioka N 1980 On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model Phys. Lett. A 76 201-4 · doi:10.1016/0375-9601(80)90466-1
[101] Stankevich N, Kazakov A and Gonchenko S 2020 Scenarios of hyperchaos occurrence in 4D Rössler system Chaos (to appear) · Zbl 1451.34056
[102] Tatjer J C 2001 Three-dimensional dissipative diffeomorphisms with homoclinic tangencies Ergod. Theor. Dynam. Syst.21 249-302 · Zbl 0972.37013 · doi:10.1017/s0143385701001146
[103] Tucker W 1999 The Lorenz attractor exists C. R. Acad. Sci. I 328 1197-202 · Zbl 0935.34050 · doi:10.1016/s0764-4442(99)80439-x
[104] Tucker W 2002 A rigorous ODE solver and smale’s 14th problem Found. Comput. Math.2 53-117 · Zbl 1047.37012 · doi:10.1007/s002080010018
[105] Turaev D 1996 On dimension of non-local bifurcational problems Int. J. Bifurcation Chaos06 919-48 · Zbl 0879.58058 · doi:10.1142/s0218127496000515
[106] Turaev D V and Shil’nikov L P 1998 An example of a wild strange attractor Sb. Math.189 291-314 · Zbl 0927.37017 · doi:10.1070/sm1998v189n02abeh000300
[107] Turaev D V and Shil’nikov L P 2008 Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors Dokl. Math.77 17-21 · Zbl 1157.37022 · doi:10.1134/s1064562408010055
[108] Xing T, Barrio R and Shilnikov A 2014 Symbolic quest into homoclinic chaos Int. J. Bifurcation Chaos24 1440004 · Zbl 1300.34101 · doi:10.1142/s0218127414400045
[109] Verner J H 1978 Explicit Runge-Kutta methods with estimates of the local truncation error SIAM J. Numer. Anal.15 772-90 · Zbl 0403.65029 · doi:10.1137/0715051
[110] Wang Q and Young L-S 2008 Toward a theory of rank one attractors Ann. Math.167 349-480 · Zbl 1181.37049 · doi:10.4007/annals.2008.167.349
[111] Wolfe C L and Samelson R M 2007 An efficient method for recovering Lyapunov vectors from singular vectors Tellus A 59 355-66 · doi:10.1111/j.1600-0870.2007.00234.x
[112] Dawson S, Grebogi C, Sauer T and Yorke J A 1994 Obstructions to shadowing when a Lyapunov exponent fluctuates about zero Phys. Rev. Lett.73 1927 · doi:10.1103/physrevlett.73.1927
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.