×

Hyperchaos and multistability in the model of two interacting microbubble contrast agents. (English) Zbl 1416.37069

Summary: We study nonlinear dynamics of two coupled contrast agents that are micrometer size gas bubbles encapsulated into a viscoelastic shell. Such bubbles are used for enhancing ultrasound visualization of blood flow and have other promising applications like targeted drug delivery and noninvasive therapy. Here, we consider a model of two such bubbles interacting via the Bjerknes force and exposed to an external ultrasound field. We demonstrate that in this five-dimensional nonlinear dynamical system, various types of complex dynamics can occur, namely, we observe periodic, quasiperiodic, chaotic, and hypechaotic oscillations of bubbles. We study the bifurcation scenarios leading to the onset of both chaotic and hyperchaotic oscillations. We show that chaotic attractors in the considered system can appear via either the Feigenbaum cascade of period-doubling bifurcations or the Afraimovich-Shilnikov scenario of torus destruction. For the onset of hyperchaotic dynamics, we propose a new bifurcation scenario, which is based on the appearance of a homoclinic chaotic attractor containing a saddle-focus periodic orbit with its two-dimensional unstable manifold. Finally, we demonstrate that the dynamics of two bubbles can be essentially multistable, i.e., various combinations of the coexistence of the above mentioned attractors are possible in this model. These cases include the coexistence of a hyperchaotic regime with an attractor of any other remaining type. Thus, the model of two coupled gas bubbles provides a new example of physically relevant system with multistable hyperchaos.
©2019 American Institute of Physics

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Szabo, T., Diagnostic Ultrasound Imaging: Inside Out (2004)
[2] Goldberg, F.; Raichlen, B. B.; Forsberg, J. S., Ultrasound Contrast Agents: Basic Principles and Clinical Applications (2001)
[3] Hoff, L., Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging (2001)
[4] Klibanov, A. L., Invest. Radiol., 41, 354 (2006) · doi:10.1097/01.rli.0000199292.88189.0f
[5] Coussios, C. C.; Roy, R. A., Annu. Rev. Fluid Mech., 40, 395 (2008) · Zbl 1214.76013 · doi:10.1146/annurev.fluid.40.111406.102116
[6] Carroll, J. M.; Calvisi, M. L.; Lauderbaugh, L. K., J. Acoust. Soc. Am., 133, 2641 (2013) · doi:10.1121/1.4796128
[7] Plesset, M. S., J. Appl. Mech., 16, 277 (1949)
[8] Doinikov, A. A.; Bouakaz, A., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 981 (2011) · doi:10.1109/TUFFC.2011.1899
[9] Takahira, H.; Yamane, S.; Akamatsu, T., JSME Int. J. Ser. B, 38, 432 (1995) · doi:10.1299/jsmeb.38.432
[10] Mettin, R.; Akhatov, I.; Parlitz, U.; Ohl, C.; Lauterborn, W., Phys. Rev. E, 56, 2924 (1997) · doi:10.1103/PhysRevE.56.2924
[11] Ida, M., Phys. Lett. A, 297, 210 (2002) · doi:10.1016/S0375-9601(02)00422-X
[12] Pelekasis, N. A.; Gaki, A.; Doinikov, A.; Tsamopoulos, J. A., J. Fluid Mech., 500, 313 (2004) · Zbl 1078.76072 · doi:10.1017/S0022112003007365
[13] Dzaharudin, F.; Suslov, S. A.; Manasseh, R.; Ooi, A., J. Acoust. Soc. Am., 134, 3425 (2013) · doi:10.1121/1.4821202
[14] Parlitz, U.; Englisch, V.; Scheffczyk, C.; Lauterborn, W., J. Acoust. Soc. Am., 88, 1061 (1990) · doi:10.1121/1.399855
[15] Behnia, S.; Jafari, A.; Soltanpoor, W.; Jahanbakhsh, O., Chaos, 41, 818 (2009) · doi:10.1016/j.chaos.2008.04.011
[16] Macdonald, C. A.; Gomatam, J., Proc. Inst. Mech. Eng. C, 220, 333 (2006) · doi:10.1243/095440606X79596
[17] Garashchuk, I. R.; Sinelshchikov, D. I.; Kudryashov, N. A., Regul. Chaotic Dyn., 23, 257 (2018) · Zbl 1400.37106 · doi:10.1134/S1560354718030036
[18] Garashchuk, I.; Sinelshchikov, D.; Kudryashov, N., Eur. Phys. J. Web Conf., 173, 03008 (2018) · doi:10.1051/epjconf/201817303008
[19] Rössler, O. E., Phys. Lett. A, 71, 155 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[20] Tamasevicius, A.; Namajunas, A.; Cenys, A., Electron. Lett., 32, 957 (1996) · doi:10.1049/el:19960630
[21] Blokhina, E. V.; Kuznetsov, S. P.; Rozhnev, A. G., IEEE Trans. Electron Devices, 54, 188 (2007) · doi:10.1109/TED.2006.888757
[22] Chen, Z.; Yang, Y.; Qi, G.; Yuan, Z., Phys. Lett. A, 360, 696 (2007) · Zbl 1236.37022 · doi:10.1016/j.physleta.2006.08.085
[23] Wu, W.; Chen, Z.; Yuan, Z., Chaos, 39, 2340 (2009) · doi:10.1016/j.chaos.2007.07.016
[24] Li, Q.; Tang, S.; Zeng, H.; Zhou, T., Nonlinear Dyn., 78, 1087 (2014) · Zbl 1331.94090 · doi:10.1007/s11071-014-1498-7
[25] Biswas, D.; Banerjee, T., Nonlinear Dyn., 83, 2331 (2016) · doi:10.1007/s11071-015-2484-4
[26] Fozin Fonzin, T.; Kengne, J.; Pelap, F. B., Nonlinear Dyn., 93, 653 (2018) · doi:10.1007/s11071-018-4216-z
[27] Harrison, M. A.; Lai, Y.-C., Phys. Rev. E, 59, R3799 (1999) · doi:10.1103/PhysRevE.59.R3799
[28] Kapitaniak, T.; Thylwe, K.-E.; Cohen, I.; Wojewoda, J., Chaos, 5, 2003 (1995) · Zbl 1080.37532 · doi:10.1016/0960-0779(94)00179-T
[29] Gonchenko, A. S.; Gonchenko, S. V., Phys. D Nonlinear Phenom., 337, 43 (2016) · Zbl 1376.37047 · doi:10.1016/j.physd.2016.07.006
[30] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Turaev, D. V., Int. J. Bifurc. Chaos, 24, 1440005 (2014) · Zbl 1300.37024 · doi:10.1142/S0218127414400057
[31] Gonchenko, A. S.; Gonchenko, S. V.; Shilnikov, L. P., Nelineinaya Din., 3, 3-28 (2012) · doi:10.20537/nd1201001
[32] Shilnikov, L. P., The theory of bifurcations and turbulence. I. Methods of qualitative theory of differential equations,, Selecta Math. Sov., 10, 1, 150-163 (1986)
[33] Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N. V.; Leonov, G. A.; Prasad, A., Phys. Rep., 637, 1 (2016) · Zbl 1359.34054 · doi:10.1016/j.physrep.2016.05.002
[34] Keller, J. B.; Miksis, M., J. Acoust. Soc. Am., 68, 628 (1980) · Zbl 0456.76087 · doi:10.1121/1.384720
[35] de Jong, N.; Hoff, L.; Skotland, T.; Bom, N., Ultrasonics, 30, 95 (1992) · doi:10.1016/0041-624X(92)90041-J
[36] Marmottant, P.; van der Meer, S.; Emmer, M.; Versluis, M.; de Jong, N.; Hilgenfeldt, S.; Lohse, D., J. Acoust. Soc. Am., 118, 3499 (2005) · doi:10.1121/1.2109427
[37] Tu, J.; Guan, J.; Qiu, Y.; Matula, T. J., J. Acoust. Soc. Am., 126, 2954 (2009) · doi:10.1121/1.3242346
[38] Cash, J. R.; Karp, A. H., ACM Trans. Math. Softw., 16, 201 (1990) · Zbl 0900.65234 · doi:10.1145/79505.79507
[39] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Meccanica, 15, 9 (1980) · Zbl 0488.70015 · doi:10.1007/BF02128236
[40] Gallas, J. A. C., Phys. Rev. Lett., 70, 2714 (1993) · doi:10.1103/PhysRevLett.70.2714
[41] Gonchenko, S. V.; Simó, C.; Vieiro, A., Nonlinearity, 26, 621 (2013) · Zbl 1286.37023 · doi:10.1088/0951-7715/26/3/621
[42] Turaev, D. V.; Shilnikov, L. P., Sbornik Math., 189, 291 (1998) · Zbl 0927.37017 · doi:10.1070/SM1998v189n02ABEH000300
[43] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Kozlov, A. D., Int. J. Bifurc. Chaos, 28, 1830036 (2018) · Zbl 1468.37002 · doi:10.1142/S0218127418300367
[44] Gonchenko, S. S.; Kazakov, A. O.; Turaev, D. (2018)
[45] Aframovich, V. S. and Shilnikov, L. P., in Nonlinear Dynamics Turbulence, edited by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman, Boston, 1983), p. 356. · Zbl 0521.00028
[46] Feigenbaum, M. J., Phys. D Nonlinear Phenom., 7, 16 (1983) · doi:10.1016/0167-2789(83)90112-4
[47] Afraimovich, V. S.; Shilnikov, L. P., Am. Math. Soc. Transl., 2, 149, 3-26 (1991)
[48] Turaev, D. V.; Shilnikov, L. P., Doklady Math., 77, 17 (2008) · Zbl 1157.37022 · doi:10.1134/S1064562408010055
[49] Borisov, A. V.; Kazakov, A. O.; Sataev, I. R., Regul. Chaotic Dyn., 21, 939 (2016) · Zbl 1378.37112 · doi:10.1134/S1560354716070157
[50] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Samylina, E. A., Radiophys. Quantum Electron, 61, 867 (2018) · doi:10.1007/s11141-019-09935-4
[51] Grines, E. A.; Kazakov, A. O.; Sataev, I. R. (2017)
[52] Borisov, A. V.; Kazakov, A. O.; Kuznetsov, S. P., Phys. Uspekhi, 57, 453 (2014) · doi:10.3367/UFNe.0184.201405b.0493
[53] Stankevich, N. V.; Kuznetsov, A. P.; Popova, E.; Seleznev, E., Nonlinear Dyn.
[54] Stankevich, N. V.; Dvorak, A.; Astakhov, V.; Jaros, P.; Kapitaniak, M.; Perlikowski, P.; Kapitaniak, T., Regul. Chaotic Dyn., 23, 120 (2018) · Zbl 1398.37031 · doi:10.1134/S1560354718010094
[55] Arnéodo, A.; Coullet, P. H.; Spiegel, E. A., Phys. Lett. A, 94, 1 (1983) · doi:10.1016/0375-9601(83)90272-4
[56] Kaneko, K., Prog. Theor. Phys., 69, 1806 (1983) · Zbl 1200.37031 · doi:10.1143/PTP.69.1806
[57] Anishchenko, V. S.; Nikolaev, S. M., Tech. Phys. Lett., 31, 853 (2005) · doi:10.1134/1.2121837
[58] Gonchenko, S. V.; Ovsyannikov, I. I.; Simó, C.; Turaev, D., Int. J. Bifurc. Chaos, 15, 3493 (2005) · Zbl 1097.37023 · doi:10.1142/S0218127405014180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.